In silico prediction of high-resolution Hi-C interaction matrices
Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.
Enregistré dans:
Auteurs principaux: | Shilu Zhang, Deborah Chasman, Sara Knaack, Sushmita Roy |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/371269a5f21c4aab82d477791ec36389 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
par: Mark Carty, et autres
Publié: (2017) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
par: Yan Zhang, et autres
Publié: (2018) -
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
par: Merve Sahin, et autres
Publié: (2021) -
Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
par: Yannick G. Spill, et autres
Publié: (2019) -
Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions
par: Kyle Xiong, et autres
Publié: (2019)