In silico prediction of high-resolution Hi-C interaction matrices
Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.
Guardado en:
Autores principales: | Shilu Zhang, Deborah Chasman, Sara Knaack, Sushmita Roy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/371269a5f21c4aab82d477791ec36389 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
por: Mark Carty, et al.
Publicado: (2017) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Yan Zhang, et al.
Publicado: (2018) -
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
por: Merve Sahin, et al.
Publicado: (2021) -
Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
por: Yannick G. Spill, et al.
Publicado: (2019) -
Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions
por: Kyle Xiong, et al.
Publicado: (2019)