In silico prediction of high-resolution Hi-C interaction matrices

Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Shilu Zhang, Deborah Chasman, Sara Knaack, Sushmita Roy
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/371269a5f21c4aab82d477791ec36389
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires