Identification of Alzheimer's disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging
Abstract The classification of Alzheimer’s disease (AD) using deep learning methods has shown promising results, but successful application in clinical settings requires a combination of high accuracy, short processing time, and generalizability to various populations. In this study, we developed a...
Guardado en:
Autores principales: | Jong Bin Bae, Subin Lee, Wonmo Jung, Sejin Park, Weonjin Kim, Hyunwoo Oh, Ji Won Han, Grace Eun Kim, Jun Sung Kim, Jae Hyoung Kim, Ki Woong Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/371364b6586240818c2f135e1d8b7cbd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using deep learning to predict temporomandibular joint disc perforation based on magnetic resonance imaging
por: Jae-Young Kim, et al.
Publicado: (2021) -
Author Correction: Automated rotator cuff tear classification using 3D convolutional neural network
por: Eungjune Shim, et al.
Publicado: (2021) -
Effect of education on functional network edge efficiency in Alzheimer’s disease
por: Yeshin Kim, et al.
Publicado: (2021) -
Development of a screening algorithm for Alzheimer's disease using categorical verbal fluency.
por: Yeon Kyung Chi, et al.
Publicado: (2014) -
Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer’s disease
por: Minjae Kim, et al.
Publicado: (2021)