A hybrid inertial algorithm for approximating solution of convex feasibility problems with applications
Abstract An inertial iterative algorithm for approximating a point in the set of zeros of a maximal monotone operator which is also a common fixed point of a countable family of relatively nonexpansive operators is studied. Strong convergence theorem is proved in a uniformly convex and uniformly smo...
Guardado en:
Autores principales: | Charles E. Chidume, Poom Kumam, Abubakar Adamu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/371af04549ac430095a86c6b56d266be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Trace-Inequalities and Matrix-Convex Functions
por: Tsuyoshi Ando
Publicado: (2010) -
Strong convergence of an inertial algorithm for maximal monotone inclusions with applications
por: C. E. Chidume, et al.
Publicado: (2020) -
Best Approximations Theorem for a Couple in Cone Banach Space
por: Erdal Karapınar, et al.
Publicado: (2010) -
<inline-formula><graphic file="1687-1812-2006-24543-i1.gif"/></inline-formula>-commuting maps and invariant approximations
por: Rhoades BE, et al.
Publicado: (2006) -
Retraction Note: Fixed point theorems for solutions of the stationary Schrödinger equation on cones
por: Gaixian Xue, et al.
Publicado: (2020)