POAT-Net: Parallel Offset-Attention Assisted Transformer for 3D Object Detection for Autonomous Driving
3D object detection is playing a key role in the perception process of autonomous driving and industrial robots automation. Inherent characteristics of point cloud raise an enormous challenge to both spatial representation and association analysis. Unordered point cloud spatial data structure and de...
Guardado en:
Autores principales: | Jinyang Wang, Xiao Lin, Hongying Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37203ad23a904e6aa2175a9f34c8069d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
por: Soyeong Kim, et al.
Publicado: (2021) -
Salient Object Detection Using Recurrent Guidance Network With Hierarchical Attention Features
por: Shanmei Lu, et al.
Publicado: (2020) -
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
por: Minghua Zhang, et al.
Publicado: (2021) -
Pole-Like Objects Segmentation and Multiscale Classification-Based Fusion from Mobile Point Clouds in Road Scenes
por: Ziyang Wang, et al.
Publicado: (2021) -
Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
por: Jiajia Wu, et al.
Publicado: (2021)