Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting
Electricity demand forecasting enables the stable operation of electric power systems and reduces electric power consumption. Previous studies have predicted electricity demand through a correlation analysis between power consumption and weather data; however, this analysis does not consider the inf...
Guardado en:
Autor principal: | Namrye Son |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/372085b571954cafa5afab648326f3f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting Electricity Load With Hybrid Scalable Model Based on Stacked Non Linear Residual Approach
por: Ayush Sinha, et al.
Publicado: (2021) -
Research on Precipitation Forecast Based on LSTM–CP Combined Model
por: Yan Guo, et al.
Publicado: (2021) -
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
Deep neural networks for global wildfire susceptibility modelling
por: Guoli Zhang, et al.
Publicado: (2021) -
Load forecasting of hybrid deep learning model considering accumulated temperature effect
por: Haihong Bian, et al.
Publicado: (2022)