A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data

<italic>Goal:</italic> Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framew...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aristos Aristodimou, Athos Antoniades, Efthimios Dardiotis, Eleni Loizidou, George Spyrou, Christina Votsi, Christodoulou Kyproula, Marios Pantzaris, Nikolaos Grigoriadis, Georgios Hadjigeorgiou, Theodoros Kyriakides, Constantinos Pattichi
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/37424223ba2649ab913818a0b0e64cf5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:37424223ba2649ab913818a0b0e64cf5
record_format dspace
spelling oai:doaj.org-article:37424223ba2649ab913818a0b0e64cf52021-11-24T00:04:05ZA Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data2644-127610.1109/OJEMB.2021.3100416https://doaj.org/article/37424223ba2649ab913818a0b0e64cf52021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9497700/https://doaj.org/toc/2644-1276<italic>Goal:</italic> Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framework is proposed for the efficient identification of n-Way interactions. <italic>Methods:</italic> The framework was applied on a Multiple Sclerosis dataset with 725 subjects and 147 tagging SNPs. The first two steps of the framework are quality control and feature selection. The next step uses clustering and binary encodes the features. The final step performs the n-Way interaction testing. <italic>Results:</italic> The feature space was reduced to 7 SNPs and using the proposed binary encoding, more 2-SNP and 3-SNP interactions were identified compared to using the initial encoding. <italic>Conclusions:</italic> The framework selects informative features and with the proposed binary encoding it is able to identify more n-way interactions by increasing the power of the statistical analysis.Aristos AristodimouAthos AntoniadesEfthimios DardiotisEleni LoizidouGeorge SpyrouChristina VotsiChristodoulou KyproulaMarios PantzarisNikolaos GrigoriadisGeorgios HadjigeorgiouTheodoros KyriakidesConstantinos PattichiIEEEarticleClusteringEpistasisFeature SelectionInteraction TestingMachine LearningComputer applications to medicine. Medical informaticsR858-859.7Medical technologyR855-855.5ENIEEE Open Journal of Engineering in Medicine and Biology, Vol 2, Pp 256-262 (2021)
institution DOAJ
collection DOAJ
language EN
topic Clustering
Epistasis
Feature Selection
Interaction Testing
Machine Learning
Computer applications to medicine. Medical informatics
R858-859.7
Medical technology
R855-855.5
spellingShingle Clustering
Epistasis
Feature Selection
Interaction Testing
Machine Learning
Computer applications to medicine. Medical informatics
R858-859.7
Medical technology
R855-855.5
Aristos Aristodimou
Athos Antoniades
Efthimios Dardiotis
Eleni Loizidou
George Spyrou
Christina Votsi
Christodoulou Kyproula
Marios Pantzaris
Nikolaos Grigoriadis
Georgios Hadjigeorgiou
Theodoros Kyriakides
Constantinos Pattichi
A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
description <italic>Goal:</italic> Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framework is proposed for the efficient identification of n-Way interactions. <italic>Methods:</italic> The framework was applied on a Multiple Sclerosis dataset with 725 subjects and 147 tagging SNPs. The first two steps of the framework are quality control and feature selection. The next step uses clustering and binary encodes the features. The final step performs the n-Way interaction testing. <italic>Results:</italic> The feature space was reduced to 7 SNPs and using the proposed binary encoding, more 2-SNP and 3-SNP interactions were identified compared to using the initial encoding. <italic>Conclusions:</italic> The framework selects informative features and with the proposed binary encoding it is able to identify more n-way interactions by increasing the power of the statistical analysis.
format article
author Aristos Aristodimou
Athos Antoniades
Efthimios Dardiotis
Eleni Loizidou
George Spyrou
Christina Votsi
Christodoulou Kyproula
Marios Pantzaris
Nikolaos Grigoriadis
Georgios Hadjigeorgiou
Theodoros Kyriakides
Constantinos Pattichi
author_facet Aristos Aristodimou
Athos Antoniades
Efthimios Dardiotis
Eleni Loizidou
George Spyrou
Christina Votsi
Christodoulou Kyproula
Marios Pantzaris
Nikolaos Grigoriadis
Georgios Hadjigeorgiou
Theodoros Kyriakides
Constantinos Pattichi
author_sort Aristos Aristodimou
title A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
title_short A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
title_full A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
title_fullStr A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
title_full_unstemmed A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
title_sort framework for efficient n-way interaction testing in case/control studies with categorical data
publisher IEEE
publishDate 2021
url https://doaj.org/article/37424223ba2649ab913818a0b0e64cf5
work_keys_str_mv AT aristosaristodimou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT athosantoniades aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT efthimiosdardiotis aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT eleniloizidou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT georgespyrou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT christinavotsi aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT christodouloukyproula aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT mariospantzaris aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT nikolaosgrigoriadis aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT georgioshadjigeorgiou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT theodoroskyriakides aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT constantinospattichi aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT aristosaristodimou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT athosantoniades frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT efthimiosdardiotis frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT eleniloizidou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT georgespyrou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT christinavotsi frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT christodouloukyproula frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT mariospantzaris frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT nikolaosgrigoriadis frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT georgioshadjigeorgiou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT theodoroskyriakides frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
AT constantinospattichi frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata
_version_ 1718416085929164800