A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
<italic>Goal:</italic> Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framew...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37424223ba2649ab913818a0b0e64cf5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:37424223ba2649ab913818a0b0e64cf5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:37424223ba2649ab913818a0b0e64cf52021-11-24T00:04:05ZA Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data2644-127610.1109/OJEMB.2021.3100416https://doaj.org/article/37424223ba2649ab913818a0b0e64cf52021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9497700/https://doaj.org/toc/2644-1276<italic>Goal:</italic> Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framework is proposed for the efficient identification of n-Way interactions. <italic>Methods:</italic> The framework was applied on a Multiple Sclerosis dataset with 725 subjects and 147 tagging SNPs. The first two steps of the framework are quality control and feature selection. The next step uses clustering and binary encodes the features. The final step performs the n-Way interaction testing. <italic>Results:</italic> The feature space was reduced to 7 SNPs and using the proposed binary encoding, more 2-SNP and 3-SNP interactions were identified compared to using the initial encoding. <italic>Conclusions:</italic> The framework selects informative features and with the proposed binary encoding it is able to identify more n-way interactions by increasing the power of the statistical analysis.Aristos AristodimouAthos AntoniadesEfthimios DardiotisEleni LoizidouGeorge SpyrouChristina VotsiChristodoulou KyproulaMarios PantzarisNikolaos GrigoriadisGeorgios HadjigeorgiouTheodoros KyriakidesConstantinos PattichiIEEEarticleClusteringEpistasisFeature SelectionInteraction TestingMachine LearningComputer applications to medicine. Medical informaticsR858-859.7Medical technologyR855-855.5ENIEEE Open Journal of Engineering in Medicine and Biology, Vol 2, Pp 256-262 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Clustering Epistasis Feature Selection Interaction Testing Machine Learning Computer applications to medicine. Medical informatics R858-859.7 Medical technology R855-855.5 |
spellingShingle |
Clustering Epistasis Feature Selection Interaction Testing Machine Learning Computer applications to medicine. Medical informatics R858-859.7 Medical technology R855-855.5 Aristos Aristodimou Athos Antoniades Efthimios Dardiotis Eleni Loizidou George Spyrou Christina Votsi Christodoulou Kyproula Marios Pantzaris Nikolaos Grigoriadis Georgios Hadjigeorgiou Theodoros Kyriakides Constantinos Pattichi A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data |
description |
<italic>Goal:</italic> Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framework is proposed for the efficient identification of n-Way interactions. <italic>Methods:</italic> The framework was applied on a Multiple Sclerosis dataset with 725 subjects and 147 tagging SNPs. The first two steps of the framework are quality control and feature selection. The next step uses clustering and binary encodes the features. The final step performs the n-Way interaction testing. <italic>Results:</italic> The feature space was reduced to 7 SNPs and using the proposed binary encoding, more 2-SNP and 3-SNP interactions were identified compared to using the initial encoding. <italic>Conclusions:</italic> The framework selects informative features and with the proposed binary encoding it is able to identify more n-way interactions by increasing the power of the statistical analysis. |
format |
article |
author |
Aristos Aristodimou Athos Antoniades Efthimios Dardiotis Eleni Loizidou George Spyrou Christina Votsi Christodoulou Kyproula Marios Pantzaris Nikolaos Grigoriadis Georgios Hadjigeorgiou Theodoros Kyriakides Constantinos Pattichi |
author_facet |
Aristos Aristodimou Athos Antoniades Efthimios Dardiotis Eleni Loizidou George Spyrou Christina Votsi Christodoulou Kyproula Marios Pantzaris Nikolaos Grigoriadis Georgios Hadjigeorgiou Theodoros Kyriakides Constantinos Pattichi |
author_sort |
Aristos Aristodimou |
title |
A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data |
title_short |
A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data |
title_full |
A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data |
title_fullStr |
A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data |
title_full_unstemmed |
A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data |
title_sort |
framework for efficient n-way interaction testing in case/control studies with categorical data |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/37424223ba2649ab913818a0b0e64cf5 |
work_keys_str_mv |
AT aristosaristodimou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT athosantoniades aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT efthimiosdardiotis aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT eleniloizidou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT georgespyrou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT christinavotsi aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT christodouloukyproula aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT mariospantzaris aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT nikolaosgrigoriadis aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT georgioshadjigeorgiou aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT theodoroskyriakides aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT constantinospattichi aframeworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT aristosaristodimou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT athosantoniades frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT efthimiosdardiotis frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT eleniloizidou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT georgespyrou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT christinavotsi frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT christodouloukyproula frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT mariospantzaris frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT nikolaosgrigoriadis frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT georgioshadjigeorgiou frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT theodoroskyriakides frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata AT constantinospattichi frameworkforefficientnwayinteractiontestingincasecontrolstudieswithcategoricaldata |
_version_ |
1718416085929164800 |