Efficient cellular annotation of histopathology slides with real-time AI augmentation

In recent years, a steady swell of biological image data has driven rapid progress in healthcare applications of computer vision and machine learning. To make sense of this data, scientists often rely on detailed annotations from domain experts for training artificial intelligence (AI) algorithms. T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: James A. Diao, Richard J. Chen, Joseph C. Kvedar
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/374430222596471db5c0a37994b36576
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:374430222596471db5c0a37994b36576
record_format dspace
spelling oai:doaj.org-article:374430222596471db5c0a37994b365762021-11-28T12:07:13ZEfficient cellular annotation of histopathology slides with real-time AI augmentation10.1038/s41746-021-00534-02398-6352https://doaj.org/article/374430222596471db5c0a37994b365762021-11-01T00:00:00Zhttps://doi.org/10.1038/s41746-021-00534-0https://doaj.org/toc/2398-6352In recent years, a steady swell of biological image data has driven rapid progress in healthcare applications of computer vision and machine learning. To make sense of this data, scientists often rely on detailed annotations from domain experts for training artificial intelligence (AI) algorithms. The time-consuming and costly process of collecting annotations presents a sizable bottleneck for AI research and development. HALS (Human-Augmenting Labeling System) is a collaborative human-AI labeling workflow that uses an iterative “review-and-revise” model to improve the efficiency of this critical process in computational pathology.James A. DiaoRichard J. ChenJoseph C. KvedarNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-2 (2021)
institution DOAJ
collection DOAJ
language EN
topic Computer applications to medicine. Medical informatics
R858-859.7
spellingShingle Computer applications to medicine. Medical informatics
R858-859.7
James A. Diao
Richard J. Chen
Joseph C. Kvedar
Efficient cellular annotation of histopathology slides with real-time AI augmentation
description In recent years, a steady swell of biological image data has driven rapid progress in healthcare applications of computer vision and machine learning. To make sense of this data, scientists often rely on detailed annotations from domain experts for training artificial intelligence (AI) algorithms. The time-consuming and costly process of collecting annotations presents a sizable bottleneck for AI research and development. HALS (Human-Augmenting Labeling System) is a collaborative human-AI labeling workflow that uses an iterative “review-and-revise” model to improve the efficiency of this critical process in computational pathology.
format article
author James A. Diao
Richard J. Chen
Joseph C. Kvedar
author_facet James A. Diao
Richard J. Chen
Joseph C. Kvedar
author_sort James A. Diao
title Efficient cellular annotation of histopathology slides with real-time AI augmentation
title_short Efficient cellular annotation of histopathology slides with real-time AI augmentation
title_full Efficient cellular annotation of histopathology slides with real-time AI augmentation
title_fullStr Efficient cellular annotation of histopathology slides with real-time AI augmentation
title_full_unstemmed Efficient cellular annotation of histopathology slides with real-time AI augmentation
title_sort efficient cellular annotation of histopathology slides with real-time ai augmentation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/374430222596471db5c0a37994b36576
work_keys_str_mv AT jamesadiao efficientcellularannotationofhistopathologyslideswithrealtimeaiaugmentation
AT richardjchen efficientcellularannotationofhistopathologyslideswithrealtimeaiaugmentation
AT josephckvedar efficientcellularannotationofhistopathologyslideswithrealtimeaiaugmentation
_version_ 1718408192120061952