Efficient cellular annotation of histopathology slides with real-time AI augmentation
In recent years, a steady swell of biological image data has driven rapid progress in healthcare applications of computer vision and machine learning. To make sense of this data, scientists often rely on detailed annotations from domain experts for training artificial intelligence (AI) algorithms. T...
Guardado en:
Autores principales: | James A. Diao, Richard J. Chen, Joseph C. Kvedar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/374430222596471db5c0a37994b36576 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Biological data annotation via a human-augmenting AI-based labeling system
por: Douwe van der Wal, et al.
Publicado: (2021) -
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
por: Charlotte Syrykh, et al.
Publicado: (2020) -
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
por: Sercan Ö. Arık, et al.
Publicado: (2021) -
Mobile health technology for diverse populations: challenges and opportunities
por: James A. Diao, et al.
Publicado: (2021) -
Beyond performance metrics: modeling outcomes and cost for clinical machine learning
por: James A. Diao, et al.
Publicado: (2021)