Improving Protein Subcellular Location Classification by Incorporating Three-Dimensional Structure Information
The subcellular locations of proteins are closely related to their functions. In the past few decades, the application of machine learning algorithms to predict protein subcellular locations has been an important topic in proteomics. However, most studies in this field used only amino acid sequences...
Guardado en:
Autores principales: | Ge Wang, Yu-Jia Zhai, Zhen-Zhen Xue, Ying-Ying Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37461aa05ec542d2b8645e8d2331ce59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting Human Protein Subcellular Locations by Using a Combination of Network and Function Features
por: Lei Chen, et al.
Publicado: (2021) -
Cadmium uptake and subcellular distribution in rice plants as affected by phosphorus: Soil and hydroponic experiments
por: Siebers,N, et al.
Publicado: (2013) -
Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning
por: Jiayu Shang, et al.
Publicado: (2021) -
Hidden neural networks for transmembrane protein topology prediction
por: Ioannis A. Tamposis, et al.
Publicado: (2021) -
Discovering the Ultimate Limits of Protein Secondary Structure Prediction
por: Chia-Tzu Ho, et al.
Publicado: (2021)