Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
Although single-cell transcriptome data are increasingly available, their interpretation remains a challenge. Here, the authors present a dimensionality reduction approach that preserves both the local and global neighbourhood structures in the data thus enhancing its interpretability.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/374e2f7ee4b743cebc2a0022380ea83b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:374e2f7ee4b743cebc2a0022380ea83b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:374e2f7ee4b743cebc2a0022380ea83b2021-12-02T15:34:00ZInterpretable dimensionality reduction of single cell transcriptome data with deep generative models10.1038/s41467-018-04368-52041-1723https://doaj.org/article/374e2f7ee4b743cebc2a0022380ea83b2018-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04368-5https://doaj.org/toc/2041-1723Although single-cell transcriptome data are increasingly available, their interpretation remains a challenge. Here, the authors present a dimensionality reduction approach that preserves both the local and global neighbourhood structures in the data thus enhancing its interpretability.Jiarui DingAnne CondonSohrab P. ShahNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jiarui Ding Anne Condon Sohrab P. Shah Interpretable dimensionality reduction of single cell transcriptome data with deep generative models |
description |
Although single-cell transcriptome data are increasingly available, their interpretation remains a challenge. Here, the authors present a dimensionality reduction approach that preserves both the local and global neighbourhood structures in the data thus enhancing its interpretability. |
format |
article |
author |
Jiarui Ding Anne Condon Sohrab P. Shah |
author_facet |
Jiarui Ding Anne Condon Sohrab P. Shah |
author_sort |
Jiarui Ding |
title |
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models |
title_short |
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models |
title_full |
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models |
title_fullStr |
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models |
title_full_unstemmed |
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models |
title_sort |
interpretable dimensionality reduction of single cell transcriptome data with deep generative models |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/374e2f7ee4b743cebc2a0022380ea83b |
work_keys_str_mv |
AT jiaruiding interpretabledimensionalityreductionofsinglecelltranscriptomedatawithdeepgenerativemodels AT annecondon interpretabledimensionalityreductionofsinglecelltranscriptomedatawithdeepgenerativemodels AT sohrabpshah interpretabledimensionalityreductionofsinglecelltranscriptomedatawithdeepgenerativemodels |
_version_ |
1718386953811918848 |