Interpretable dimensionality reduction of single cell transcriptome data with deep generative models

Although single-cell transcriptome data are increasingly available, their interpretation remains a challenge. Here, the authors present a dimensionality reduction approach that preserves both the local and global neighbourhood structures in the data thus enhancing its interpretability.

Guardado en:
Detalles Bibliográficos
Autores principales: Jiarui Ding, Anne Condon, Sohrab P. Shah
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/374e2f7ee4b743cebc2a0022380ea83b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:374e2f7ee4b743cebc2a0022380ea83b
record_format dspace
spelling oai:doaj.org-article:374e2f7ee4b743cebc2a0022380ea83b2021-12-02T15:34:00ZInterpretable dimensionality reduction of single cell transcriptome data with deep generative models10.1038/s41467-018-04368-52041-1723https://doaj.org/article/374e2f7ee4b743cebc2a0022380ea83b2018-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04368-5https://doaj.org/toc/2041-1723Although single-cell transcriptome data are increasingly available, their interpretation remains a challenge. Here, the authors present a dimensionality reduction approach that preserves both the local and global neighbourhood structures in the data thus enhancing its interpretability.Jiarui DingAnne CondonSohrab P. ShahNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jiarui Ding
Anne Condon
Sohrab P. Shah
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
description Although single-cell transcriptome data are increasingly available, their interpretation remains a challenge. Here, the authors present a dimensionality reduction approach that preserves both the local and global neighbourhood structures in the data thus enhancing its interpretability.
format article
author Jiarui Ding
Anne Condon
Sohrab P. Shah
author_facet Jiarui Ding
Anne Condon
Sohrab P. Shah
author_sort Jiarui Ding
title Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
title_short Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
title_full Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
title_fullStr Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
title_full_unstemmed Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
title_sort interpretable dimensionality reduction of single cell transcriptome data with deep generative models
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/374e2f7ee4b743cebc2a0022380ea83b
work_keys_str_mv AT jiaruiding interpretabledimensionalityreductionofsinglecelltranscriptomedatawithdeepgenerativemodels
AT annecondon interpretabledimensionalityreductionofsinglecelltranscriptomedatawithdeepgenerativemodels
AT sohrabpshah interpretabledimensionalityreductionofsinglecelltranscriptomedatawithdeepgenerativemodels
_version_ 1718386953811918848