Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
Although single-cell transcriptome data are increasingly available, their interpretation remains a challenge. Here, the authors present a dimensionality reduction approach that preserves both the local and global neighbourhood structures in the data thus enhancing its interpretability.
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2018
|
Subjects: | |
Online Access: | https://doaj.org/article/374e2f7ee4b743cebc2a0022380ea83b |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|