Towards computationally efficient prediction of molecular signatures from routine histology images
Guardado en:
Autores principales: | Maxime W Lafarge, Viktor H Koelzer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37599219459d407a91ddd8c7246964c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
por: Mohsin Bilal, PhD, et al.
Publicado: (2021) -
Medical Image Diagnostic Value of Computed Tomography for Bladder Tumors
por: Lin Li, et al.
Publicado: (2021) -
Towards nationally curated data archives for clinical radiology image analysis at scale: Learnings from national data collection in response to a pandemic
por: Dominic Cushnan, et al.
Publicado: (2021) -
Machine learning prediction of blood alcohol concentration: a digital signature of smart-breathalyzer behavior
por: Kirstin Aschbacher, et al.
Publicado: (2021) -
Deep learning-enabled medical computer vision
por: Andre Esteva, et al.
Publicado: (2021)