Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data

Cross-sectional omic data often have non-homogeneous genetic, phenotypic, or environmental backgrounds. Here, the authors develop a statistical framework to infer pseudotime trajectories in the presence of such factors as well as their interactions in both single-cell and bulk gene expression analys...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kieran R Campbell, Christopher Yau
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/3761c004c4af44ac8a270dfce339a057
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3761c004c4af44ac8a270dfce339a057
record_format dspace
spelling oai:doaj.org-article:3761c004c4af44ac8a270dfce339a0572021-12-02T17:31:26ZUncovering pseudotemporal trajectories with covariates from single cell and bulk expression data10.1038/s41467-018-04696-62041-1723https://doaj.org/article/3761c004c4af44ac8a270dfce339a0572018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04696-6https://doaj.org/toc/2041-1723Cross-sectional omic data often have non-homogeneous genetic, phenotypic, or environmental backgrounds. Here, the authors develop a statistical framework to infer pseudotime trajectories in the presence of such factors as well as their interactions in both single-cell and bulk gene expression analysisKieran R CampbellChristopher YauNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kieran R Campbell
Christopher Yau
Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
description Cross-sectional omic data often have non-homogeneous genetic, phenotypic, or environmental backgrounds. Here, the authors develop a statistical framework to infer pseudotime trajectories in the presence of such factors as well as their interactions in both single-cell and bulk gene expression analysis
format article
author Kieran R Campbell
Christopher Yau
author_facet Kieran R Campbell
Christopher Yau
author_sort Kieran R Campbell
title Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
title_short Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
title_full Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
title_fullStr Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
title_full_unstemmed Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
title_sort uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/3761c004c4af44ac8a270dfce339a057
work_keys_str_mv AT kieranrcampbell uncoveringpseudotemporaltrajectorieswithcovariatesfromsinglecellandbulkexpressiondata
AT christopheryau uncoveringpseudotemporaltrajectorieswithcovariatesfromsinglecellandbulkexpressiondata
_version_ 1718380605321773056