Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
Cross-sectional omic data often have non-homogeneous genetic, phenotypic, or environmental backgrounds. Here, the authors develop a statistical framework to infer pseudotime trajectories in the presence of such factors as well as their interactions in both single-cell and bulk gene expression analys...
Guardado en:
Autores principales: | Kieran R Campbell, Christopher Yau |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3761c004c4af44ac8a270dfce339a057 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Trajectory-based differential expression analysis for single-cell sequencing data
por: Koen Van den Berge, et al.
Publicado: (2020) -
TCM visualizes trajectories and cell populations from single cell data
por: Wuming Gong, et al.
Publicado: (2018) -
Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data
por: Salem Malikic, et al.
Publicado: (2019) -
From bulk, single-cell to spatial RNA sequencing
por: Xinmin Li, et al.
Publicado: (2021) -
Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
por: Huidong Chen, et al.
Publicado: (2019)