Cell type identification from single-cell transcriptomes in melanoma
Abstract Background Single-cell sequencing approaches allow gene expression to be measured at the single-cell level, providing opportunities and challenges to study the aetiology of complex diseases, including cancer. Methods Based on single-cell gene and lncRNA expression levels, we proposed a comp...
Enregistré dans:
Auteurs principaux: | Qiuyan Huo, Yu Yin, Fangfang Liu, Yuying Ma, Liming Wang, Guimin Qin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/376d7da8df7b4c7ba77f56a0d0d526ba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Transcriptome sequencing identified the ceRNA network associated with recurrent spontaneous abortion
par: Yong Huang, et autres
Publié: (2021) -
Gene biomarker prediction in glioma by integrating scRNA-seq data and gene regulatory network
par: Guimin Qin, et autres
Publié: (2021) -
LncRNA‐H19 gene plays a significant role in regulating glioma cell function
par: Ping Liu, et autres
Publié: (2021) -
A Competitive Endogenous RNA Network Based on Differentially Expressed lncRNA in Lipopolysaccharide‐Induced Acute Lung Injury in Mice
par: Xianxian Jia, et autres
Publié: (2021) -
High-Throughput Sequencing Profiles About lncRNAs and mRNAs of Ovarian Granulosa Cells in Polycystic Ovary Syndrome
par: Yanjun Zheng, et autres
Publié: (2021)