Support vector machines for oil classification link with polyaromatic hydrocarbon contamination in the environment
The main focus of this study is exploring the spatial distribution of polyaromatics hydrocarbon links between oil spills in the environment via Support Vector Machines based on Kernel-Radial Basis Function (RBF) approach for high precision classification of oil spill type from its sample fingerprint...
Guardado en:
Autores principales: | Azimah Ismail, Hafizan Juahir, Saiful Bahri Mohamed, Mohd Ekhwan Toriman, Azlina Md. Kassim, Sharifuddin Md. Zain, Hadieh Monajemi, Wan Kamaruzaman Wan Ahmad, Munirah Abdul Zali, Ananthy Retnam, Mohd. Zaki Mohd. Taib, Mazlin Mokhtar, Siti Nor Fazillah Abdullah |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/377836402cbe48bb8436f2879ef3704b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Caractérisation des services écosystémiques fournis par Cordyla pinnata dans la périphérie de la Forêt classée de Patako au Sénégal
por: Sara Danièle Dieng, et al.
Publicado: (2016) -
Polyaromatic molecular peanuts
por: Kohei Yazaki, et al.
Publicado: (2017) -
Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
por: Souza,Carlos H. Wachholz de, et al.
Publicado: (2013) -
Polyaromatic nanocapsules as photoresponsive hosts in water
por: Lorenzo Catti, et al.
Publicado: (2019) -
Combustion characteristics of hydrogen in a noble gas compression ignition engine
por: Norhidayah Mat Taib, et al.
Publicado: (2021)