Antitumor and antibacterial properties of virally encoded cationic sequences

Jean-Hervé Colle,1,* Bruno Périchon,2,* Alphonse Garcia1,31Laboratoire E3 des Phosphatases-Unité RMN, Institut Pasteur, Paris, France; 2Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, Paris, Fra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Colle JH, Périchon B, Garcia A
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/377ad73f0281489a9d2ae9c795c0bf11
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:377ad73f0281489a9d2ae9c795c0bf11
record_format dspace
spelling oai:doaj.org-article:377ad73f0281489a9d2ae9c795c0bf112021-12-02T06:43:54ZAntitumor and antibacterial properties of virally encoded cationic sequences1177-5491https://doaj.org/article/377ad73f0281489a9d2ae9c795c0bf112019-06-01T00:00:00Zhttps://www.dovepress.com/antitumor-and-antibacterial-properties-of-virally-encoded-cationic-seq-peer-reviewed-article-BTThttps://doaj.org/toc/1177-5491Jean-Hervé Colle,1,* Bruno Périchon,2,* Alphonse Garcia1,31Laboratoire E3 des Phosphatases-Unité RMN, Institut Pasteur, Paris, France; 2Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, Paris, France; 3Département de Biologie Structurale et Chimie et pôle Dde-Design de la Biologie, Institut Pasteur, Paris, France*These authors contributed equally to this work Objective: The objective of this study was to test our Viral Quinta Columna Strategy (VQCS), a new biological hypothesis predicting that specific multifunctional virally encoded cationic domains may have the capacity to penetrate human cells and interact with PP2A proteins to deregulate important human intracellular pathways, and may display LL37 cathelicidin-like antagonistic effects against multiple pathogens such as bacteria or viruses.Methods: We comparatively analyzed the host defense properties of adenodiaphorins and of some specific cationic sequences encoded by different viruses using two distinct biological models: U87G, a well-characterized cell tumor model; and a group B Streptococcus agalactiae NEM316 ΔdltA, highly sensitive to LL37 cathelicidin.Results: We found that the adenovirus type 2 E4orf4 is a cell-permeable protein containing a new E4orf464–95 protein transduction domain, named large adenodiaphorin or LadD64–95. Interestingly, the host defense LL37 peptide is the unique cathelicidin in humans. In this context, we also demonstrated that similarly to LL37 LadD64–95, several virally encoded cationic sequences including the C-terminus HIV-1 89.6 Vpr77–92, shorter adenodiaphorins AdD67–84/AdD/69–84/AdD69–83, as well as HIV-2 Tat67–90 and JC polyomavirus small t115–134, displayed similar toxicity against Gram-positive S. agalactiae NEM316 ΔdltA strain. Finally, LadD64–95, adenodiaphorin AdD67–84, AdD69–84, and LL37 and LL17–32 cathelicidin peptides also inhibited the survival of human U87G glioblastoma cells.Conclusion: In this study, we demonstrated that specific cationic sequences encoded by four different viruses displayed antibacterial activities against S. agalactiae NEM316 ΔdltA strain. In addition, HIV-1 Vpr71–92 and adenovirus 2 E4orf464–95, two cationic penetrating sequences that bind PP2A, inhibited the survival of U87G glioblastoma cells. These results illustrate the host defense properties of virally encoded sequences and could represent an initial step for future complete validation of the VQCS hypothesis.Keywords: cationic sequences, PP2A, cancer, viruses, bacteriaColle JHPérichon BGarcia ADove Medical PressarticleCationic sequencesPP2AcancervirusesbacteriaMedicine (General)R5-920ENBiologics: Targets & Therapy, Vol Volume 13, Pp 117-126 (2019)
institution DOAJ
collection DOAJ
language EN
topic Cationic sequences
PP2A
cancer
viruses
bacteria
Medicine (General)
R5-920
spellingShingle Cationic sequences
PP2A
cancer
viruses
bacteria
Medicine (General)
R5-920
Colle JH
Périchon B
Garcia A
Antitumor and antibacterial properties of virally encoded cationic sequences
description Jean-Hervé Colle,1,* Bruno Périchon,2,* Alphonse Garcia1,31Laboratoire E3 des Phosphatases-Unité RMN, Institut Pasteur, Paris, France; 2Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, Paris, France; 3Département de Biologie Structurale et Chimie et pôle Dde-Design de la Biologie, Institut Pasteur, Paris, France*These authors contributed equally to this work Objective: The objective of this study was to test our Viral Quinta Columna Strategy (VQCS), a new biological hypothesis predicting that specific multifunctional virally encoded cationic domains may have the capacity to penetrate human cells and interact with PP2A proteins to deregulate important human intracellular pathways, and may display LL37 cathelicidin-like antagonistic effects against multiple pathogens such as bacteria or viruses.Methods: We comparatively analyzed the host defense properties of adenodiaphorins and of some specific cationic sequences encoded by different viruses using two distinct biological models: U87G, a well-characterized cell tumor model; and a group B Streptococcus agalactiae NEM316 ΔdltA, highly sensitive to LL37 cathelicidin.Results: We found that the adenovirus type 2 E4orf4 is a cell-permeable protein containing a new E4orf464–95 protein transduction domain, named large adenodiaphorin or LadD64–95. Interestingly, the host defense LL37 peptide is the unique cathelicidin in humans. In this context, we also demonstrated that similarly to LL37 LadD64–95, several virally encoded cationic sequences including the C-terminus HIV-1 89.6 Vpr77–92, shorter adenodiaphorins AdD67–84/AdD/69–84/AdD69–83, as well as HIV-2 Tat67–90 and JC polyomavirus small t115–134, displayed similar toxicity against Gram-positive S. agalactiae NEM316 ΔdltA strain. Finally, LadD64–95, adenodiaphorin AdD67–84, AdD69–84, and LL37 and LL17–32 cathelicidin peptides also inhibited the survival of human U87G glioblastoma cells.Conclusion: In this study, we demonstrated that specific cationic sequences encoded by four different viruses displayed antibacterial activities against S. agalactiae NEM316 ΔdltA strain. In addition, HIV-1 Vpr71–92 and adenovirus 2 E4orf464–95, two cationic penetrating sequences that bind PP2A, inhibited the survival of U87G glioblastoma cells. These results illustrate the host defense properties of virally encoded sequences and could represent an initial step for future complete validation of the VQCS hypothesis.Keywords: cationic sequences, PP2A, cancer, viruses, bacteria
format article
author Colle JH
Périchon B
Garcia A
author_facet Colle JH
Périchon B
Garcia A
author_sort Colle JH
title Antitumor and antibacterial properties of virally encoded cationic sequences
title_short Antitumor and antibacterial properties of virally encoded cationic sequences
title_full Antitumor and antibacterial properties of virally encoded cationic sequences
title_fullStr Antitumor and antibacterial properties of virally encoded cationic sequences
title_full_unstemmed Antitumor and antibacterial properties of virally encoded cationic sequences
title_sort antitumor and antibacterial properties of virally encoded cationic sequences
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/377ad73f0281489a9d2ae9c795c0bf11
work_keys_str_mv AT collejh antitumorandantibacterialpropertiesofvirallyencodedcationicsequences
AT perichonb antitumorandantibacterialpropertiesofvirallyencodedcationicsequences
AT garciaa antitumorandantibacterialpropertiesofvirallyencodedcationicsequences
_version_ 1718399747736207360