Combining Accuracy and Plasticity in Convolutional Neural Networks Based on Resistive Memory Arrays for Autonomous Learning
Nowadays, artificial neural networks (ANNs) can outperform the human brain’s ability in specific tasks. However, ANNs cannot replicate the efficient and low-power learning, adaptation, and consolidation typical of biological organisms. Here, we present a hardware design based on arrays of...
Enregistré dans:
Auteurs principaux: | Stefano Bianchi, Irene Munoz-Martin, Erika Covi, Alessandro Bricalli, Giuseppe Piccoloni, Amir Regev, Gabriel Molas, Jean Francois Nodin, Francois Andrieu, Daniele Ielmini |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/37b5a4a1ad6f48178c41617d2bac5f0f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A divided and prioritized experience replay approach for streaming regression
par: Mikkel Leite Arnø, et autres
Publié: (2021) -
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection
par: Shivang Agarwal, et autres
Publié: (2022) -
SPACE: Structured Compression and Sharing of Representational Space for Continual Learning
par: Gobinda Saha, et autres
Publié: (2021) -
T-DFNN: An Incremental Learning Algorithm for Intrusion Detection Systems
par: Mahendra Data, et autres
Publié: (2021) -
Impact of the Stacking Order of HfO<sub><italic>x</italic></sub> and AlO<sub><italic>x</italic></sub> Dielectric Films on RRAM Switching Mechanisms to Behave Digital Resistive Switching and Synaptic Characteristics
par: Kai-Chi Chuang, et autres
Publié: (2019)