Converting tabular data into images for deep learning with convolutional neural networks
Abstract Convolutional neural networks (CNNs) have been successfully used in many applications where important information about data is embedded in the order of features, such as speech and imaging. However, most tabular data do not assume a spatial relationship between features, and thus are unsui...
Guardado en:
Autores principales: | Yitan Zhu, Thomas Brettin, Fangfang Xia, Alexander Partin, Maulik Shukla, Hyunseung Yoo, Yvonne A. Evrard, James H. Doroshow, Rick L. Stevens |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37c2f916e6fa45c08315225e5a9e05de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Converting tabular data into images for deep learning with convolutional neural networks
por: Yitan Zhu, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
por: Ramla Bensaci, et al.
Publicado: (2021) -
Deep Convolutional Neural Network Ensembles Using ECOC
por: Sara Atito Ali Ahmed, et al.
Publicado: (2021) -
Based on improved deep convolutional neural network model pneumonia image classification.
por: Lingzhi Kong, et al.
Publicado: (2021) -
Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
por: Hirotoshi Takiyama, et al.
Publicado: (2018)