The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells.
Mesenchymal stem cells (MSCs) are a group of multipotent cells with key properties of multi-lineage differentiation, expressing a set of relatively specific surface markers and unique immunomodulatory functions. IDO1, a catabolic enzyme of tryptophan, represents a critical molecule mediating immunom...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37c6a7f1721d45ac85a05e279d14e3cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:37c6a7f1721d45ac85a05e279d14e3cf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:37c6a7f1721d45ac85a05e279d14e3cf2021-12-02T20:07:24ZThe notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells.1932-620310.1371/journal.pone.0118168https://doaj.org/article/37c6a7f1721d45ac85a05e279d14e3cf2015-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0118168https://doaj.org/toc/1932-6203Mesenchymal stem cells (MSCs) are a group of multipotent cells with key properties of multi-lineage differentiation, expressing a set of relatively specific surface markers and unique immunomodulatory functions. IDO1, a catabolic enzyme of tryptophan, represents a critical molecule mediating immunomodulatory functions of MSCs. However, the signaling pathways involved in regulating these key properties still remain elusive. To investigate the involvement of Notch signaling as well as other potential signaling pathway(s) in regulating these critical properties of MSCs, we treated human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with γ-secreatase inhibitor I (GSI-I), which inhibits both Notch signaling and ubiquitin-proteasome activities. It was shown that the GSI-I treatment resulted in apoptosis, reduced expression of surface markers CD73, CD90 and CD105, reduced osteogenic differentiation, and reduction of the hUC-MSCs-mediated suppression of Th1 lymphocyte proliferation and the IFN-γ-induced IDO1 expression. Through distinguishing the effects of GSI-I between Notch inhibition and proteasome inhibition, it was further observed that, whereas both Notch inhibition and proteasome inhibition were attributable to the reduced CD105 expression and osteogenic differentiation, but not to the induced apoptosis. However, Notch inhibition, but not proteasome inhibition, only contributed to the significant effect of GSI-I on Th1 proliferation probably through reducing IDO1 promoter activity. In conclusion, the Notch signaling may represent a very important cell signaling capable of regulating multiple critical properties, especially the immunomodulatory functions of MSCs.Tao NaJing LiuKehua ZhangMin DingBao-Zhu YuanPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 10, Iss 2, p e0118168 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tao Na Jing Liu Kehua Zhang Min Ding Bao-Zhu Yuan The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. |
description |
Mesenchymal stem cells (MSCs) are a group of multipotent cells with key properties of multi-lineage differentiation, expressing a set of relatively specific surface markers and unique immunomodulatory functions. IDO1, a catabolic enzyme of tryptophan, represents a critical molecule mediating immunomodulatory functions of MSCs. However, the signaling pathways involved in regulating these key properties still remain elusive. To investigate the involvement of Notch signaling as well as other potential signaling pathway(s) in regulating these critical properties of MSCs, we treated human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with γ-secreatase inhibitor I (GSI-I), which inhibits both Notch signaling and ubiquitin-proteasome activities. It was shown that the GSI-I treatment resulted in apoptosis, reduced expression of surface markers CD73, CD90 and CD105, reduced osteogenic differentiation, and reduction of the hUC-MSCs-mediated suppression of Th1 lymphocyte proliferation and the IFN-γ-induced IDO1 expression. Through distinguishing the effects of GSI-I between Notch inhibition and proteasome inhibition, it was further observed that, whereas both Notch inhibition and proteasome inhibition were attributable to the reduced CD105 expression and osteogenic differentiation, but not to the induced apoptosis. However, Notch inhibition, but not proteasome inhibition, only contributed to the significant effect of GSI-I on Th1 proliferation probably through reducing IDO1 promoter activity. In conclusion, the Notch signaling may represent a very important cell signaling capable of regulating multiple critical properties, especially the immunomodulatory functions of MSCs. |
format |
article |
author |
Tao Na Jing Liu Kehua Zhang Min Ding Bao-Zhu Yuan |
author_facet |
Tao Na Jing Liu Kehua Zhang Min Ding Bao-Zhu Yuan |
author_sort |
Tao Na |
title |
The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. |
title_short |
The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. |
title_full |
The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. |
title_fullStr |
The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. |
title_full_unstemmed |
The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. |
title_sort |
notch signaling regulates cd105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2015 |
url |
https://doaj.org/article/37c6a7f1721d45ac85a05e279d14e3cf |
work_keys_str_mv |
AT taona thenotchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT jingliu thenotchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT kehuazhang thenotchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT minding thenotchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT baozhuyuan thenotchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT taona notchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT jingliu notchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT kehuazhang notchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT minding notchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells AT baozhuyuan notchsignalingregulatescd105expressionosteogenicdifferentiationandimmunomodulationofhumanumbilicalcordmesenchymalstemcells |
_version_ |
1718375296335347712 |