High-order generalized-alpha method
The generalized-α method encompasses a wide range of time integrators. The method possesses high-frequency dissipation while minimizing unwanted low-frequency dissipation. Additionally, the numerical dissipation can be controlled by the user by setting a single parameter, ρ∞. The method is unconditi...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | article |
| Language: | EN |
| Published: |
Elsevier
2020
|
| Subjects: | |
| Online Access: | https://doaj.org/article/37ec4c599e0f4f5fa70ec6b50697fafe |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The generalized-α method encompasses a wide range of time integrators. The method possesses high-frequency dissipation while minimizing unwanted low-frequency dissipation. Additionally, the numerical dissipation can be controlled by the user by setting a single parameter, ρ∞. The method is unconditionally stable and has second-order accuracy in time. We extend the second-order generalized-α method to third-order in time while the numerical dissipation can be controlled by a single parameter. In each time step, the scheme only requires inverting one matrix on acceleration and update the displacement and velocity explicitly. We establish that the third-order method is unconditionally stable. We discuss a possible path to the generalization to higher order schemes. All these high-order schemes can be easily implemented into programs that already contain the second-order generalized-α method. |
|---|