Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system
Abstract Carbon dioxide is the most abundant, non-condensable gas in volcanic systems, released into the atmosphere through either diffuse or advective fluid flow. The emission of substantial amounts of CO2 at Earth’s surface is not only controlled by volcanic plumes during periods of eruptive activ...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37ec5e3f3cd94df194b4cf39a90e0239 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:37ec5e3f3cd94df194b4cf39a90e0239 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:37ec5e3f3cd94df194b4cf39a90e02392021-12-02T17:41:12ZMonitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system10.1038/s41598-021-97023-x2045-2322https://doaj.org/article/37ec5e3f3cd94df194b4cf39a90e02392021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97023-xhttps://doaj.org/toc/2045-2322Abstract Carbon dioxide is the most abundant, non-condensable gas in volcanic systems, released into the atmosphere through either diffuse or advective fluid flow. The emission of substantial amounts of CO2 at Earth’s surface is not only controlled by volcanic plumes during periods of eruptive activity or fumaroles, but also by soil degassing along permeable structures in the subsurface. Monitoring of these processes is of utmost importance for volcanic hazard analyses, and is also relevant for managing geothermal resources. Fluid-bearing faults are key elements of economic value for geothermal power generation. Here, we describe for the first time how sensitively and quickly natural gas emissions react to changes within a deep hydrothermal system due to geothermal fluid reinjection. For this purpose, we deployed an automated, multi-chamber CO2 flux monitoring system within the damage zone of a deep-rooted major normal fault in the Los Humeros Volcanic Complex (LHVC) in Mexico and recorded data over a period of five months. After removing the atmospheric effects on variations in CO2 flux, we calculated correlation coefficients between residual CO2 emissions and reinjection rates, identifying an inverse correlation of ρ = − 0.51 to − 0.66. Our results indicate that gas emissions respond to changes in reinjection rates within 24 h, proving an active hydraulic communication between the hydrothermal system and Earth’s surface. This finding is a promising indication not only for geothermal reservoir monitoring but also for advanced long-term volcanic risk analysis. Response times allow for estimation of fluid migration velocities, which is a key constraint for conceptual and numerical modelling of fluid flow in fracture-dominated systems.Anna JentschWalter DuesingEgbert JolieMartin ZimmerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Anna Jentsch Walter Duesing Egbert Jolie Martin Zimmer Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system |
description |
Abstract Carbon dioxide is the most abundant, non-condensable gas in volcanic systems, released into the atmosphere through either diffuse or advective fluid flow. The emission of substantial amounts of CO2 at Earth’s surface is not only controlled by volcanic plumes during periods of eruptive activity or fumaroles, but also by soil degassing along permeable structures in the subsurface. Monitoring of these processes is of utmost importance for volcanic hazard analyses, and is also relevant for managing geothermal resources. Fluid-bearing faults are key elements of economic value for geothermal power generation. Here, we describe for the first time how sensitively and quickly natural gas emissions react to changes within a deep hydrothermal system due to geothermal fluid reinjection. For this purpose, we deployed an automated, multi-chamber CO2 flux monitoring system within the damage zone of a deep-rooted major normal fault in the Los Humeros Volcanic Complex (LHVC) in Mexico and recorded data over a period of five months. After removing the atmospheric effects on variations in CO2 flux, we calculated correlation coefficients between residual CO2 emissions and reinjection rates, identifying an inverse correlation of ρ = − 0.51 to − 0.66. Our results indicate that gas emissions respond to changes in reinjection rates within 24 h, proving an active hydraulic communication between the hydrothermal system and Earth’s surface. This finding is a promising indication not only for geothermal reservoir monitoring but also for advanced long-term volcanic risk analysis. Response times allow for estimation of fluid migration velocities, which is a key constraint for conceptual and numerical modelling of fluid flow in fracture-dominated systems. |
format |
article |
author |
Anna Jentsch Walter Duesing Egbert Jolie Martin Zimmer |
author_facet |
Anna Jentsch Walter Duesing Egbert Jolie Martin Zimmer |
author_sort |
Anna Jentsch |
title |
Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system |
title_short |
Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system |
title_full |
Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system |
title_fullStr |
Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system |
title_full_unstemmed |
Monitoring the response of volcanic CO2 emissions to changes in the Los Humeros hydrothermal system |
title_sort |
monitoring the response of volcanic co2 emissions to changes in the los humeros hydrothermal system |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/37ec5e3f3cd94df194b4cf39a90e0239 |
work_keys_str_mv |
AT annajentsch monitoringtheresponseofvolcanicco2emissionstochangesintheloshumeroshydrothermalsystem AT walterduesing monitoringtheresponseofvolcanicco2emissionstochangesintheloshumeroshydrothermalsystem AT egbertjolie monitoringtheresponseofvolcanicco2emissionstochangesintheloshumeroshydrothermalsystem AT martinzimmer monitoringtheresponseofvolcanicco2emissionstochangesintheloshumeroshydrothermalsystem |
_version_ |
1718379696907878400 |