How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs
Real-world networks are typically characterised by a non-trivial organization at the mesoscale, such that groups of nodes are preferentially connected within distinguishable network regions known as communities. In this work the authors define unipartite, bipartite, and multilayer network representa...
Guardado en:
Autores principales: | Anton Eriksson, Daniel Edler, Alexis Rojas, Manlio de Domenico, Martin Rosvall |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37ecc9c24c0241d3a054f8f4fca408db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hypergraph reconstruction from network data
por: Jean-Gabriel Young, et al.
Publicado: (2021) -
Phase transitions and stability of dynamical processes on hypergraphs
por: Guilherme Ferraz de Arruda, et al.
Publicado: (2021) -
Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021) -
Detecting informative higher-order interactions in statistically validated hypergraphs
por: Federico Musciotto, et al.
Publicado: (2021) -
Publisher Correction: Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021)