Direct band-gap crossover in epitaxial monolayer boron nitride

Insulating hexagonal boron nitride (hBN) is theoretically expected to undergo a crossover to a direct bandgap in the monolayer limit. Here, the authors perform optical spectroscopy measurements on atomically thin epitaxial hBN providing indications of the presence of a direct gap of energy 6.1 eV in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: C. Elias, P. Valvin, T. Pelini, A. Summerfield, C. J. Mellor, T. S. Cheng, L. Eaves, C. T. Foxon, P. H. Beton, S. V. Novikov, B. Gil, G. Cassabois
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/37ee1074b78f488f83916006346b401a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:37ee1074b78f488f83916006346b401a
record_format dspace
spelling oai:doaj.org-article:37ee1074b78f488f83916006346b401a2021-12-02T16:57:45ZDirect band-gap crossover in epitaxial monolayer boron nitride10.1038/s41467-019-10610-52041-1723https://doaj.org/article/37ee1074b78f488f83916006346b401a2019-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10610-5https://doaj.org/toc/2041-1723Insulating hexagonal boron nitride (hBN) is theoretically expected to undergo a crossover to a direct bandgap in the monolayer limit. Here, the authors perform optical spectroscopy measurements on atomically thin epitaxial hBN providing indications of the presence of a direct gap of energy 6.1 eV in the single atomic layer.C. EliasP. ValvinT. PeliniA. SummerfieldC. J. MellorT. S. ChengL. EavesC. T. FoxonP. H. BetonS. V. NovikovB. GilG. CassaboisNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
C. Elias
P. Valvin
T. Pelini
A. Summerfield
C. J. Mellor
T. S. Cheng
L. Eaves
C. T. Foxon
P. H. Beton
S. V. Novikov
B. Gil
G. Cassabois
Direct band-gap crossover in epitaxial monolayer boron nitride
description Insulating hexagonal boron nitride (hBN) is theoretically expected to undergo a crossover to a direct bandgap in the monolayer limit. Here, the authors perform optical spectroscopy measurements on atomically thin epitaxial hBN providing indications of the presence of a direct gap of energy 6.1 eV in the single atomic layer.
format article
author C. Elias
P. Valvin
T. Pelini
A. Summerfield
C. J. Mellor
T. S. Cheng
L. Eaves
C. T. Foxon
P. H. Beton
S. V. Novikov
B. Gil
G. Cassabois
author_facet C. Elias
P. Valvin
T. Pelini
A. Summerfield
C. J. Mellor
T. S. Cheng
L. Eaves
C. T. Foxon
P. H. Beton
S. V. Novikov
B. Gil
G. Cassabois
author_sort C. Elias
title Direct band-gap crossover in epitaxial monolayer boron nitride
title_short Direct band-gap crossover in epitaxial monolayer boron nitride
title_full Direct band-gap crossover in epitaxial monolayer boron nitride
title_fullStr Direct band-gap crossover in epitaxial monolayer boron nitride
title_full_unstemmed Direct band-gap crossover in epitaxial monolayer boron nitride
title_sort direct band-gap crossover in epitaxial monolayer boron nitride
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/37ee1074b78f488f83916006346b401a
work_keys_str_mv AT celias directbandgapcrossoverinepitaxialmonolayerboronnitride
AT pvalvin directbandgapcrossoverinepitaxialmonolayerboronnitride
AT tpelini directbandgapcrossoverinepitaxialmonolayerboronnitride
AT asummerfield directbandgapcrossoverinepitaxialmonolayerboronnitride
AT cjmellor directbandgapcrossoverinepitaxialmonolayerboronnitride
AT tscheng directbandgapcrossoverinepitaxialmonolayerboronnitride
AT leaves directbandgapcrossoverinepitaxialmonolayerboronnitride
AT ctfoxon directbandgapcrossoverinepitaxialmonolayerboronnitride
AT phbeton directbandgapcrossoverinepitaxialmonolayerboronnitride
AT svnovikov directbandgapcrossoverinepitaxialmonolayerboronnitride
AT bgil directbandgapcrossoverinepitaxialmonolayerboronnitride
AT gcassabois directbandgapcrossoverinepitaxialmonolayerboronnitride
_version_ 1718382440213381120