Effective forecasting of key features in hospital emergency department: Hybrid deep learning-driven methods
Forecasting the different types of emergency department (ED) demands (patient flows) in hospital systems much aids ED managers in looking into various options to appropriately allocating the restricted resources available per patient attendance. Deep learning networks have recently gained great succ...
Guardado en:
Autores principales: | Fouzi Harrou, Abdelkader Dairi, Farid Kadri, Ying Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37f5111959ce4dddaeeaba146515af39 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
por: Ari Yair Barrera-Animas, et al.
Publicado: (2022) -
Enhanced performance of Dark-Nets for brain tumor classification and segmentation using colormap-based superpixel techniques
por: Sakshi Ahuja, et al.
Publicado: (2022) -
Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
por: Dianchun Bai, et al.
Publicado: (2021) -
Using Rounding Errors in Modern Computer Technologies
por: Valerii Zadiraka, et al.
Publicado: (2021) -
Enhancing the pattern recognition capacity of machine learning techniques: The importance of feature positioning
por: Debora Di Caprio, et al.
Publicado: (2022)