A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis

Predictive computational approaches are fundamental to accelerating solid-state inorganic synthesis. This work demonstrates a computational tractable approach constructed from available thermochemistry data and based on a graph-based network model for predicting solid-state inorganic reaction pathwa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew J. McDermott, Shyam S. Dwaraknath, Kristin A. Persson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/38056a546c614468a2aed7df9ba8906d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:38056a546c614468a2aed7df9ba8906d
record_format dspace
spelling oai:doaj.org-article:38056a546c614468a2aed7df9ba8906d2021-12-02T14:47:29ZA graph-based network for predicting chemical reaction pathways in solid-state materials synthesis10.1038/s41467-021-23339-x2041-1723https://doaj.org/article/38056a546c614468a2aed7df9ba8906d2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23339-xhttps://doaj.org/toc/2041-1723Predictive computational approaches are fundamental to accelerating solid-state inorganic synthesis. This work demonstrates a computational tractable approach constructed from available thermochemistry data and based on a graph-based network model for predicting solid-state inorganic reaction pathways.Matthew J. McDermottShyam S. DwaraknathKristin A. PerssonNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Matthew J. McDermott
Shyam S. Dwaraknath
Kristin A. Persson
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
description Predictive computational approaches are fundamental to accelerating solid-state inorganic synthesis. This work demonstrates a computational tractable approach constructed from available thermochemistry data and based on a graph-based network model for predicting solid-state inorganic reaction pathways.
format article
author Matthew J. McDermott
Shyam S. Dwaraknath
Kristin A. Persson
author_facet Matthew J. McDermott
Shyam S. Dwaraknath
Kristin A. Persson
author_sort Matthew J. McDermott
title A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
title_short A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
title_full A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
title_fullStr A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
title_full_unstemmed A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
title_sort graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/38056a546c614468a2aed7df9ba8906d
work_keys_str_mv AT matthewjmcdermott agraphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis
AT shyamsdwaraknath agraphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis
AT kristinapersson agraphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis
AT matthewjmcdermott graphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis
AT shyamsdwaraknath graphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis
AT kristinapersson graphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis
_version_ 1718389503330091008