A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
Predictive computational approaches are fundamental to accelerating solid-state inorganic synthesis. This work demonstrates a computational tractable approach constructed from available thermochemistry data and based on a graph-based network model for predicting solid-state inorganic reaction pathwa...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38056a546c614468a2aed7df9ba8906d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:38056a546c614468a2aed7df9ba8906d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:38056a546c614468a2aed7df9ba8906d2021-12-02T14:47:29ZA graph-based network for predicting chemical reaction pathways in solid-state materials synthesis10.1038/s41467-021-23339-x2041-1723https://doaj.org/article/38056a546c614468a2aed7df9ba8906d2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23339-xhttps://doaj.org/toc/2041-1723Predictive computational approaches are fundamental to accelerating solid-state inorganic synthesis. This work demonstrates a computational tractable approach constructed from available thermochemistry data and based on a graph-based network model for predicting solid-state inorganic reaction pathways.Matthew J. McDermottShyam S. DwaraknathKristin A. PerssonNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Matthew J. McDermott Shyam S. Dwaraknath Kristin A. Persson A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis |
description |
Predictive computational approaches are fundamental to accelerating solid-state inorganic synthesis. This work demonstrates a computational tractable approach constructed from available thermochemistry data and based on a graph-based network model for predicting solid-state inorganic reaction pathways. |
format |
article |
author |
Matthew J. McDermott Shyam S. Dwaraknath Kristin A. Persson |
author_facet |
Matthew J. McDermott Shyam S. Dwaraknath Kristin A. Persson |
author_sort |
Matthew J. McDermott |
title |
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis |
title_short |
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis |
title_full |
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis |
title_fullStr |
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis |
title_full_unstemmed |
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis |
title_sort |
graph-based network for predicting chemical reaction pathways in solid-state materials synthesis |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/38056a546c614468a2aed7df9ba8906d |
work_keys_str_mv |
AT matthewjmcdermott agraphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis AT shyamsdwaraknath agraphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis AT kristinapersson agraphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis AT matthewjmcdermott graphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis AT shyamsdwaraknath graphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis AT kristinapersson graphbasednetworkforpredictingchemicalreactionpathwaysinsolidstatematerialssynthesis |
_version_ |
1718389503330091008 |