A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
Predictive computational approaches are fundamental to accelerating solid-state inorganic synthesis. This work demonstrates a computational tractable approach constructed from available thermochemistry data and based on a graph-based network model for predicting solid-state inorganic reaction pathwa...
Guardado en:
Autores principales: | Matthew J. McDermott, Shyam S. Dwaraknath, Kristin A. Persson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38056a546c614468a2aed7df9ba8906d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A framework for quantifying uncertainty in DFT energy corrections
por: Amanda Wang, et al.
Publicado: (2021) -
Quantum chemical calculations of lithium-ion battery electrolyte and interphase species
por: Evan Walter Clark Spotte-Smith, et al.
Publicado: (2021) -
Synthesis of nanostructured materials by a new solid state pyrolysis organometallic polymer method
por: DÍAZ,CARLOS, et al.
Publicado: (2005) -
Computational prediction of new auxetic materials
por: John Dagdelen, et al.
Publicado: (2017) -
Synthesis and characterization of manganese ferrite from low grade manganese ore through solid state reaction route
por: Salar Ahmad, et al.
Publicado: (2021)