Carbocyanine dye usage in demarcating boundaries of the aged human red nucleus.

<h4>Background</h4>Though the adult human magnocellular Red nucleus (mNr) is essentially vestigial and its boundaries with neighbouring structures have never been well demarcated, human studies in utero have shown a well developed semilunar mNr wrapping around the caudal parvicellular Re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Satoru Onodera, T Philip Hicks
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3805c44205a844fc8180bf2ad5fb812b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>Though the adult human magnocellular Red nucleus (mNr) is essentially vestigial and its boundaries with neighbouring structures have never been well demarcated, human studies in utero have shown a well developed semilunar mNr wrapping around the caudal parvicellular Red nucleus (pNr), similar to what is seen in quadrupeds. In the present study, we have sought to better delineate the morphological determinants of the adult human Red nucleus (ahRn).<h4>Methods and findings</h4>Serial sections of ahRn show fine myelinated fibers arising from pNr and turning toward the central tegmental tract. DiI was deposited within a well restricted region of ahRn at the fasciculus retroflexus level and the extent of label determined. Nissl-stained serial sections allowed production of a 3-D mNr model, showing rudimentary, vestigial morphology compared with its well developed infant homologue. DiI within this vestigial mNr region at the level of the oculomotor nerve showed labeled giant/large mNr neurons, coarse fiber bundles at the ventral tegmental decussation and lateral lemniscal label.<h4>Conclusions</h4>Large amounts of DiI and a long incubation time have proven useful in aged human brain as a marker of long axons and large cell bodies of projecting neurons such as the rubrospinal projection and for clarifying nuclear boundaries of closed nuclei (e.g., the large human pNr). Our 3D model of adult human mNr appeared shrunken in shape and axially rotated compared with the infant mNr, the rotation being a common feature among mammalian mNr.