Quantum ferromagnet in the proximity of the tricritical point

Quantum phase transitions: Tuned in metallic ferromagnets Clean ferromagnetic systems are predicted to exhibit quantum phase transitions (QPTs) rather than critical points. QPTs happen at zero temperature due to quantum fluctuations between the phases, and can be triggered by non-thermal perturbatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Petr Opletal, Jan Prokleška, Jaroslav Valenta, Petr Proschek, Vladimír Tkáč, Róbert Tarasenko, Marie Běhounková, Šárka Matoušková, Mohsen M. Abd-Elmeguid, Vladimír Sechovský
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/381ee9ececb24929abdc3f0b0ed7267e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:381ee9ececb24929abdc3f0b0ed7267e
record_format dspace
spelling oai:doaj.org-article:381ee9ececb24929abdc3f0b0ed7267e2021-12-02T14:18:31ZQuantum ferromagnet in the proximity of the tricritical point10.1038/s41535-017-0035-62397-4648https://doaj.org/article/381ee9ececb24929abdc3f0b0ed7267e2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41535-017-0035-6https://doaj.org/toc/2397-4648Quantum phase transitions: Tuned in metallic ferromagnets Clean ferromagnetic systems are predicted to exhibit quantum phase transitions (QPTs) rather than critical points. QPTs happen at zero temperature due to quantum fluctuations between the phases, and can be triggered by non-thermal perturbations such as hydrostatic pressure, chemical composition or magnetic fields. Jan Prokleška at Czesh Charles University and colleagues from Czech Republic and Germany demonstrate that it is possible to tune the QPT of the metallic ferromagnet UCo1-xRuxAl by pressure or weak Ru doping. The experimental study of QPTs in metallic ferromagnets is typically hindered by the extreme conditions required to drive the system into the transition, or by the presence of additional phases such as superconductivity. Instead, UCo1-xRuxAl allows to get access to the QPT at easily accessible experimental conditions, opening the possibility of studying in detail quantum critical phenomena.Petr OpletalJan ProkleškaJaroslav ValentaPetr ProschekVladimír TkáčRóbert TarasenkoMarie BěhounkováŠárka MatouškováMohsen M. Abd-ElmeguidVladimír SechovskýNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 2, Iss 1, Pp 1-6 (2017)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
Petr Opletal
Jan Prokleška
Jaroslav Valenta
Petr Proschek
Vladimír Tkáč
Róbert Tarasenko
Marie Běhounková
Šárka Matoušková
Mohsen M. Abd-Elmeguid
Vladimír Sechovský
Quantum ferromagnet in the proximity of the tricritical point
description Quantum phase transitions: Tuned in metallic ferromagnets Clean ferromagnetic systems are predicted to exhibit quantum phase transitions (QPTs) rather than critical points. QPTs happen at zero temperature due to quantum fluctuations between the phases, and can be triggered by non-thermal perturbations such as hydrostatic pressure, chemical composition or magnetic fields. Jan Prokleška at Czesh Charles University and colleagues from Czech Republic and Germany demonstrate that it is possible to tune the QPT of the metallic ferromagnet UCo1-xRuxAl by pressure or weak Ru doping. The experimental study of QPTs in metallic ferromagnets is typically hindered by the extreme conditions required to drive the system into the transition, or by the presence of additional phases such as superconductivity. Instead, UCo1-xRuxAl allows to get access to the QPT at easily accessible experimental conditions, opening the possibility of studying in detail quantum critical phenomena.
format article
author Petr Opletal
Jan Prokleška
Jaroslav Valenta
Petr Proschek
Vladimír Tkáč
Róbert Tarasenko
Marie Běhounková
Šárka Matoušková
Mohsen M. Abd-Elmeguid
Vladimír Sechovský
author_facet Petr Opletal
Jan Prokleška
Jaroslav Valenta
Petr Proschek
Vladimír Tkáč
Róbert Tarasenko
Marie Běhounková
Šárka Matoušková
Mohsen M. Abd-Elmeguid
Vladimír Sechovský
author_sort Petr Opletal
title Quantum ferromagnet in the proximity of the tricritical point
title_short Quantum ferromagnet in the proximity of the tricritical point
title_full Quantum ferromagnet in the proximity of the tricritical point
title_fullStr Quantum ferromagnet in the proximity of the tricritical point
title_full_unstemmed Quantum ferromagnet in the proximity of the tricritical point
title_sort quantum ferromagnet in the proximity of the tricritical point
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/381ee9ececb24929abdc3f0b0ed7267e
work_keys_str_mv AT petropletal quantumferromagnetintheproximityofthetricriticalpoint
AT janprokleska quantumferromagnetintheproximityofthetricriticalpoint
AT jaroslavvalenta quantumferromagnetintheproximityofthetricriticalpoint
AT petrproschek quantumferromagnetintheproximityofthetricriticalpoint
AT vladimirtkac quantumferromagnetintheproximityofthetricriticalpoint
AT roberttarasenko quantumferromagnetintheproximityofthetricriticalpoint
AT mariebehounkova quantumferromagnetintheproximityofthetricriticalpoint
AT sarkamatouskova quantumferromagnetintheproximityofthetricriticalpoint
AT mohsenmabdelmeguid quantumferromagnetintheproximityofthetricriticalpoint
AT vladimirsechovsky quantumferromagnetintheproximityofthetricriticalpoint
_version_ 1718391600964435968