All Graphs with a Failed Zero Forcing Number of Two

Given a graph <i>G</i>, the zero forcing number of <i>G</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi>G</mi><mo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luis Gomez, Karla Rubi, Jorden Terrazas, Darren A. Narayan
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/382ff62de0fa4047bba6ee5af930ca60
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Given a graph <i>G</i>, the zero forcing number of <i>G</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is the smallest cardinality of any set <i>S</i> of vertices on which repeated applications of the forcing rule results in all vertices being in <i>S</i>. The forcing rule is: if a vertex <i>v</i> is in <i>S</i>, and exactly one neighbor <i>u</i> of <i>v</i> is not in <i>S</i>, then <i>u</i> is added to <i>S</i> in the next iteration. Zero forcing numbers have attracted great interest over the past 15 years and have been well studied. In this paper, we investigate the largest size of a set <i>S</i> that does not force all of the vertices in a graph to be in <i>S</i>. This quantity is known as the failed zero forcing number of a graph and will be denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We present new results involving this parameter. In particular, we completely characterize all graphs <i>G</i> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, solving a problem posed in 2015 by Fetcie, Jacob, and Saavedra.