PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network
Abstract In this paper, we propose a real-time prediction model that can respond to particulate matters (PM) in the air, which are an indication of poor air quality. The model applies interpolation to air quality and weather data and then uses a Convolutional Neural Network (CNN) to predict PM conce...
Guardado en:
Autores principales: | Sangwon Chae, Joonhyeok Shin, Sungjun Kwon, Sangmok Lee, Sungwon Kang, Donghyun Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3830b8fdb2bc4eb888ec0b6ae92c3406 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Airborne particulate matter in an iron mining city: Characterization, cell uptake and cytotoxicity effects of nanoparticles from PM2.5, PM10 and PM20 on human lung cells
por: Mariana Morozesk, et al.
Publicado: (2021) -
PM2.5 Concentration Forecasting in Industrial Parks Based on Attention Mechanism Spatiotemporal Graph Convolutional Networks
por: Qingtian Zeng, et al.
Publicado: (2021) -
Estimación de Factores de Emisión de PM10 y PM2.5, en Vías Urbanas en Mexicali, Baja California, México
por: Meza,Lourdes M, et al.
Publicado: (2010) -
Estimation of the PM<sub>2.5</sub> and PM<sub>10</sub> Mass Concentration over Land from FY-4A Aerosol Optical Depth Data
por: Yuxin Sun, et al.
Publicado: (2021) -
Health risk assessment of PM2.5 on walking trips
por: Caihua Zhu, et al.
Publicado: (2021)