Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting
Abstract Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM2.5 is a promising way to fill the areas that are not covered by ground PM2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) a...
Guardado en:
Autores principales: | Wenxi Yu, Yang Liu, Zongwei Ma, Jun Bi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38379f76c318465b87bbed02f065fc88 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimation of PM<sub>2.5</sub> Concentration Using Deep Bayesian Model Considering Spatial Multiscale
por: Xingdi Chen, et al.
Publicado: (2021) -
Publisher Correction: Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
por: Yikuan Li, et al.
Publicado: (2021) -
Comparison of PM<sub>2.5</sub> in Seoul, Korea Estimated from the Various Ground-Based and Satellite AOD
por: Sang-Min Kim, et al.
Publicado: (2021) -
Effect of PM2.5 pollution on perinatal mortality in China
por: Guangqin Li, et al.
Publicado: (2021) -
An Efficient Method for Capturing the High Peak Concentrations of PM<sub>2.5</sub> Using Gaussian-Filtered Deep Learning
por: Inchoon Yeo, et al.
Publicado: (2021)