Effect of Corneal Tilt on the Determination of Asphericity

<b>Purpose:</b> To quantify the effect of levelling the corneal surface around the optical axis on the calculated values of corneal asphericity when conic and biconic models are used to fit the anterior corneal surface. <b>Methods:</b> This cross-sectional study starts with a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alejandra Consejo, Arwa Fathy, Bernardo T. Lopes, Renato Ambrósio, Ahmed Abass
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
eye
Acceso en línea:https://doaj.org/article/383de9b821464ea4a6eea1f5855e42ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:383de9b821464ea4a6eea1f5855e42ff
record_format dspace
spelling oai:doaj.org-article:383de9b821464ea4a6eea1f5855e42ff2021-11-25T18:58:07ZEffect of Corneal Tilt on the Determination of Asphericity10.3390/s212276361424-8220https://doaj.org/article/383de9b821464ea4a6eea1f5855e42ff2021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7636https://doaj.org/toc/1424-8220<b>Purpose:</b> To quantify the effect of levelling the corneal surface around the optical axis on the calculated values of corneal asphericity when conic and biconic models are used to fit the anterior corneal surface. <b>Methods:</b> This cross-sectional study starts with a mathematical simulation proving the concept of the effect that the eye’s tilt has on the corneal asphericity calculation. Spherical, conic and biconic models are considered and compared. Further, corneal asphericity is analysed in the eyes of 177 healthy participants aged 35.4 ± 15.2. The optical axis was determined using an optimization procedure via the Levenberg–Marquardt nonlinear least-squares algorithm, before fitting the corneal surface to spherical, conic and biconic models. The influence of pupil size (aperture radii of 1.5, 3.0, 4.0 and 5.0 mm) on corneal radius and asphericity was also analysed. <b>Results:</b> In computer simulations, eye tilt caused an increase in the apical radii of the surface with the increase of the tilt angle in both positive and negative directions and aperture radii in all models. Fitting the cornea to spherical models did not show a significant difference between the raw-measured corneal surfaces and the levelled surfaces for right and left eyes. When the conic models were fitted to the cornea, changes in the radii of the cornea among the raw-measured corneal surfaces’ data and levelled data were not significant; however, significant differences were recorded in the asphericity of the anterior surfaces at radii of aperture 1.5 mm (<i>p</i> < 0.01). With the biconic model, the posterior surfaces recorded significant asphericity differences at aperture radii of 1.5 mm, 3 mm, 4 mm and 5 mm (<i>p</i> = 0.01, <i>p</i> < 0.01, <i>p</i> < 0.01 & <i>p</i> < 0.01, respectively) in the nasal temporal direction of right eyes and left eyes (<i>p</i> < 0.01, <i>p</i> < 0.01, <i>p</i> < 0.01 & <i>p</i> < 0.01, respectively). In the superior–inferior direction, significant changes were only noticed at aperture radii of 1.5 mm for both right and left eyes (<i>p</i> = 0.05, <i>p</i> < 0.01). <b>Conclusions:</b> Estimation of human corneal asphericity from topography or tomography data using conic and biconic models of corneas are affected by eyes’ natural tilt. In contrast, the apical radii of the cornea are less affected. Using corneal asphericity in certain applications such as fitting contact lenses, corneal implant design, planning for refractive surgery and mathematical modelling when a geometrical centre of the eye is needed should be implemented with caution.Alejandra ConsejoArwa FathyBernardo T. LopesRenato AmbrósioAhmed AbassMDPI AGarticleeyecorneatiltasphericityparametriceye modelsChemical technologyTP1-1185ENSensors, Vol 21, Iss 7636, p 7636 (2021)
institution DOAJ
collection DOAJ
language EN
topic eye
cornea
tilt
asphericity
parametric
eye models
Chemical technology
TP1-1185
spellingShingle eye
cornea
tilt
asphericity
parametric
eye models
Chemical technology
TP1-1185
Alejandra Consejo
Arwa Fathy
Bernardo T. Lopes
Renato Ambrósio
Ahmed Abass
Effect of Corneal Tilt on the Determination of Asphericity
description <b>Purpose:</b> To quantify the effect of levelling the corneal surface around the optical axis on the calculated values of corneal asphericity when conic and biconic models are used to fit the anterior corneal surface. <b>Methods:</b> This cross-sectional study starts with a mathematical simulation proving the concept of the effect that the eye’s tilt has on the corneal asphericity calculation. Spherical, conic and biconic models are considered and compared. Further, corneal asphericity is analysed in the eyes of 177 healthy participants aged 35.4 ± 15.2. The optical axis was determined using an optimization procedure via the Levenberg–Marquardt nonlinear least-squares algorithm, before fitting the corneal surface to spherical, conic and biconic models. The influence of pupil size (aperture radii of 1.5, 3.0, 4.0 and 5.0 mm) on corneal radius and asphericity was also analysed. <b>Results:</b> In computer simulations, eye tilt caused an increase in the apical radii of the surface with the increase of the tilt angle in both positive and negative directions and aperture radii in all models. Fitting the cornea to spherical models did not show a significant difference between the raw-measured corneal surfaces and the levelled surfaces for right and left eyes. When the conic models were fitted to the cornea, changes in the radii of the cornea among the raw-measured corneal surfaces’ data and levelled data were not significant; however, significant differences were recorded in the asphericity of the anterior surfaces at radii of aperture 1.5 mm (<i>p</i> < 0.01). With the biconic model, the posterior surfaces recorded significant asphericity differences at aperture radii of 1.5 mm, 3 mm, 4 mm and 5 mm (<i>p</i> = 0.01, <i>p</i> < 0.01, <i>p</i> < 0.01 & <i>p</i> < 0.01, respectively) in the nasal temporal direction of right eyes and left eyes (<i>p</i> < 0.01, <i>p</i> < 0.01, <i>p</i> < 0.01 & <i>p</i> < 0.01, respectively). In the superior–inferior direction, significant changes were only noticed at aperture radii of 1.5 mm for both right and left eyes (<i>p</i> = 0.05, <i>p</i> < 0.01). <b>Conclusions:</b> Estimation of human corneal asphericity from topography or tomography data using conic and biconic models of corneas are affected by eyes’ natural tilt. In contrast, the apical radii of the cornea are less affected. Using corneal asphericity in certain applications such as fitting contact lenses, corneal implant design, planning for refractive surgery and mathematical modelling when a geometrical centre of the eye is needed should be implemented with caution.
format article
author Alejandra Consejo
Arwa Fathy
Bernardo T. Lopes
Renato Ambrósio
Ahmed Abass
author_facet Alejandra Consejo
Arwa Fathy
Bernardo T. Lopes
Renato Ambrósio
Ahmed Abass
author_sort Alejandra Consejo
title Effect of Corneal Tilt on the Determination of Asphericity
title_short Effect of Corneal Tilt on the Determination of Asphericity
title_full Effect of Corneal Tilt on the Determination of Asphericity
title_fullStr Effect of Corneal Tilt on the Determination of Asphericity
title_full_unstemmed Effect of Corneal Tilt on the Determination of Asphericity
title_sort effect of corneal tilt on the determination of asphericity
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/383de9b821464ea4a6eea1f5855e42ff
work_keys_str_mv AT alejandraconsejo effectofcornealtiltonthedeterminationofasphericity
AT arwafathy effectofcornealtiltonthedeterminationofasphericity
AT bernardotlopes effectofcornealtiltonthedeterminationofasphericity
AT renatoambrosio effectofcornealtiltonthedeterminationofasphericity
AT ahmedabass effectofcornealtiltonthedeterminationofasphericity
_version_ 1718410456336433152