Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.

The ability to switch between different visuomotor maps accurately and efficiently is an invaluable feature to a flexible and adaptive human motor system. This can be examined in dual adaptation paradigms where the motor system is challenged to perform under randomly switching, opposing perturbation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maria N Ayala, Denise Y P Henriques
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3840dca8c26b40bca6002ada3255b413
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3840dca8c26b40bca6002ada3255b413
record_format dspace
spelling oai:doaj.org-article:3840dca8c26b40bca6002ada3255b4132021-12-02T20:09:37ZDifferential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.1932-620310.1371/journal.pone.0253948https://doaj.org/article/3840dca8c26b40bca6002ada3255b4132021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0253948https://doaj.org/toc/1932-6203The ability to switch between different visuomotor maps accurately and efficiently is an invaluable feature to a flexible and adaptive human motor system. This can be examined in dual adaptation paradigms where the motor system is challenged to perform under randomly switching, opposing perturbations. Typically, dual adaptation doesn't proceed unless each mapping is trained in association with a predictive cue. To investigate this, we first explored whether dual adaptation occurs under a variety of contextual cues including active follow-through movements, passive follow-through movements, active lead-in movements, and static visual cues. In the second experiment, we provided one group with a compensatory strategy about the perturbations (30° CW and 30° CCW rotations) and their relationships to each context (static visual cues). We found that active, but not passive, movement cues elicited dual adaptation. Expectedly, we didn't find evidence for dual adaptation using static visual cues, but those in the Instruction group compensated by implementing aiming strategies. Then, across all experimental conditions, we explored the extent by which dual learning is supported by both implicit and explicit mechanisms, regardless of whether they elicited dual adaptation across all the various cues. To this end, following perturbed training, participants from all experiments were asked to either use or ignore the strategy as they reached without visual feedback. This Process Dissociation Procedure teased apart the implicit and explicit contributions to dual adaptation. Critically, we didn't find evidence for implicit learning for those given instructions, suggesting that when explicit aiming strategies are implemented in dual adaptation, implicit mechanisms are likely not involved. Thus, by implementing conscious strategies, dual adaptation can be easily facilitated even in cases where learning would not occur otherwise.Maria N AyalaDenise Y P HenriquesPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 7, p e0253948 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Maria N Ayala
Denise Y P Henriques
Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.
description The ability to switch between different visuomotor maps accurately and efficiently is an invaluable feature to a flexible and adaptive human motor system. This can be examined in dual adaptation paradigms where the motor system is challenged to perform under randomly switching, opposing perturbations. Typically, dual adaptation doesn't proceed unless each mapping is trained in association with a predictive cue. To investigate this, we first explored whether dual adaptation occurs under a variety of contextual cues including active follow-through movements, passive follow-through movements, active lead-in movements, and static visual cues. In the second experiment, we provided one group with a compensatory strategy about the perturbations (30° CW and 30° CCW rotations) and their relationships to each context (static visual cues). We found that active, but not passive, movement cues elicited dual adaptation. Expectedly, we didn't find evidence for dual adaptation using static visual cues, but those in the Instruction group compensated by implementing aiming strategies. Then, across all experimental conditions, we explored the extent by which dual learning is supported by both implicit and explicit mechanisms, regardless of whether they elicited dual adaptation across all the various cues. To this end, following perturbed training, participants from all experiments were asked to either use or ignore the strategy as they reached without visual feedback. This Process Dissociation Procedure teased apart the implicit and explicit contributions to dual adaptation. Critically, we didn't find evidence for implicit learning for those given instructions, suggesting that when explicit aiming strategies are implemented in dual adaptation, implicit mechanisms are likely not involved. Thus, by implementing conscious strategies, dual adaptation can be easily facilitated even in cases where learning would not occur otherwise.
format article
author Maria N Ayala
Denise Y P Henriques
author_facet Maria N Ayala
Denise Y P Henriques
author_sort Maria N Ayala
title Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.
title_short Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.
title_full Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.
title_fullStr Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.
title_full_unstemmed Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.
title_sort differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/3840dca8c26b40bca6002ada3255b413
work_keys_str_mv AT marianayala differentialcontributionsofimplicitandexplicitlearningmechanismstovariouscontextualcuesindualadaptation
AT deniseyphenriques differentialcontributionsofimplicitandexplicitlearningmechanismstovariouscontextualcuesindualadaptation
_version_ 1718375055607463936