3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee
Abstract Microwave ablation has been widely accepted in treating bone tumor. However, its procedure is time-consuming and usually results in postoperative fractures. To solve this problem, we designed and fabricated titanium plates customized to the patients’ bone structures. The personalized titani...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3846d9312ab8445792a1868043350397 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3846d9312ab8445792a1868043350397 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3846d9312ab8445792a18680433503972021-12-02T16:06:38Z3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee10.1038/s41598-017-07243-32045-2322https://doaj.org/article/3846d9312ab8445792a18680433503972017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07243-3https://doaj.org/toc/2045-2322Abstract Microwave ablation has been widely accepted in treating bone tumor. However, its procedure is time-consuming and usually results in postoperative fractures. To solve this problem, we designed and fabricated titanium plates customized to the patients’ bone structures. The personalized titanium plates were then used for fixation after the removal of tumorous tissue. Specifically, 3D models of tumor-bearing bone segments were constructed by using computed tomography (CT) and magnetic resonance imaging (MRI). The 3D models were used to design the personalized titanium plates. The plate model was transferred into a numerical control machine for manufacturing the personalized titanium plates by 3D printing. The plates were then surgically implanted for reconstruction assistance following microwave-induced hyperthermia to remove the bone tumor. Implementation parameters and knee functions were then evaluated. No postoperative fractures, implant failures or loosening problems occurred; mean Musculoskeletal Tumor Society score was 27.17 from the latest follow-up. Mean maximum flexion of affected knees was 114.08°. The results of knee gait analysis were comparable with normal population data. Our work suggests that personalized titanium plates can significantly improve the clinical outcomes in the surgical removal of bone tumor. This study represents the first-time effort in using personalized titanium plates for such surgery.Limin MaYe ZhouYe ZhuZefeng LinLingling ChenYu ZhangHong XiaChuanbin MaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Limin Ma Ye Zhou Ye Zhu Zefeng Lin Lingling Chen Yu Zhang Hong Xia Chuanbin Mao 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee |
description |
Abstract Microwave ablation has been widely accepted in treating bone tumor. However, its procedure is time-consuming and usually results in postoperative fractures. To solve this problem, we designed and fabricated titanium plates customized to the patients’ bone structures. The personalized titanium plates were then used for fixation after the removal of tumorous tissue. Specifically, 3D models of tumor-bearing bone segments were constructed by using computed tomography (CT) and magnetic resonance imaging (MRI). The 3D models were used to design the personalized titanium plates. The plate model was transferred into a numerical control machine for manufacturing the personalized titanium plates by 3D printing. The plates were then surgically implanted for reconstruction assistance following microwave-induced hyperthermia to remove the bone tumor. Implementation parameters and knee functions were then evaluated. No postoperative fractures, implant failures or loosening problems occurred; mean Musculoskeletal Tumor Society score was 27.17 from the latest follow-up. Mean maximum flexion of affected knees was 114.08°. The results of knee gait analysis were comparable with normal population data. Our work suggests that personalized titanium plates can significantly improve the clinical outcomes in the surgical removal of bone tumor. This study represents the first-time effort in using personalized titanium plates for such surgery. |
format |
article |
author |
Limin Ma Ye Zhou Ye Zhu Zefeng Lin Lingling Chen Yu Zhang Hong Xia Chuanbin Mao |
author_facet |
Limin Ma Ye Zhou Ye Zhu Zefeng Lin Lingling Chen Yu Zhang Hong Xia Chuanbin Mao |
author_sort |
Limin Ma |
title |
3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee |
title_short |
3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee |
title_full |
3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee |
title_fullStr |
3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee |
title_full_unstemmed |
3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee |
title_sort |
3d printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/3846d9312ab8445792a1868043350397 |
work_keys_str_mv |
AT liminma 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee AT yezhou 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee AT yezhu 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee AT zefenglin 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee AT linglingchen 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee AT yuzhang 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee AT hongxia 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee AT chuanbinmao 3dprintedpersonalizedtitaniumplatesimproveclinicaloutcomeinmicrowaveablationofbonetumorsaroundtheknee |
_version_ |
1718384896520486912 |