DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets
Effective management of dairy farms requires an accurate prediction of pasture biomass. Generally, estimation of pasture biomass requires site-specific data, or often perfect world assumptions to model prediction systems when field measurements or other sensory inputs are unavailable. However, for s...
Guardado en:
Autores principales: | Murtaza Rangwala, Jun Liu, Kulbir Singh Ahluwalia, Shayan Ghajar, Harnaik Singh Dhami, Benjamin F. Tracy, Pratap Tokekar, Ryan K. Williams |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/385b740902a5406b8653f4fb755e6b41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
- Crop & pasture science
-
Plum Ripeness Analysis in Real Environments Using Deep Learning with Convolutional Neural Networks
por: Rolando Miragaia, et al.
Publicado: (2021) -
Fam de pa i de terra : la col℗ʺlectivitzaciÌo agrÌ€aria a Catalunya /
por: Gavald,̀ Antoni
Publicado: (2016) -
Mechanical Control with a Deep Learning Method for Precise Weeding on a Farm
por: Chung-Liang Chang, et al.
Publicado: (2021) -
Predicting wine quality from terrain characteristics with regression trees
por: Reiner Schwarz
Publicado: (1997)