Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric an...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN FR IT |
Publicado: |
Sapienza Università Editrice
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric and coercive matrix, and Φ is continuous function but without any growth assumption on u. |
---|