Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities

We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hicham Redwane
Formato: article
Lenguaje:EN
FR
IT
Publicado: Sapienza Università Editrice 2008
Materias:
Acceso en línea:https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric and coercive matrix, and Φ is continuous function but without any growth assumption on u.