Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric an...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN FR IT |
Publicado: |
Sapienza Università Editrice
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:38921a86a4f9409db04c2bffaa4d656a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:38921a86a4f9409db04c2bffaa4d656a2021-11-29T17:15:45ZUniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities1120-71832532-3350https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a2008-01-01T00:00:00Zhttps://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2008(2)/189-200.pdfhttps://doaj.org/toc/1120-7183https://doaj.org/toc/2532-3350We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric and coercive matrix, and Φ is continuous function but without any growth assumption on u.Hicham RedwaneSapienza Università Editricearticlenonlinear parabolic equationsuniquenessrenormalized solutionsMathematicsQA1-939ENFRITRendiconti di Matematica e delle Sue Applicazioni, Vol 28, Iss 2, Pp 189-200 (2008) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN FR IT |
topic |
nonlinear parabolic equations uniqueness renormalized solutions Mathematics QA1-939 |
spellingShingle |
nonlinear parabolic equations uniqueness renormalized solutions Mathematics QA1-939 Hicham Redwane Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities |
description |
We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric and coercive matrix, and Φ is continuous function but without any growth assumption on u. |
format |
article |
author |
Hicham Redwane |
author_facet |
Hicham Redwane |
author_sort |
Hicham Redwane |
title |
Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities |
title_short |
Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities |
title_full |
Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities |
title_fullStr |
Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities |
title_full_unstemmed |
Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities |
title_sort |
uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities |
publisher |
Sapienza Università Editrice |
publishDate |
2008 |
url |
https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a |
work_keys_str_mv |
AT hichamredwane uniquenessofrenormalizedsolutionsforaclassofparabolicequationswithunboundednonlinearities |
_version_ |
1718407216861544448 |