Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities

We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hicham Redwane
Formato: article
Lenguaje:EN
FR
IT
Publicado: Sapienza Università Editrice 2008
Materias:
Acceso en línea:https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:38921a86a4f9409db04c2bffaa4d656a
record_format dspace
spelling oai:doaj.org-article:38921a86a4f9409db04c2bffaa4d656a2021-11-29T17:15:45ZUniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities1120-71832532-3350https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a2008-01-01T00:00:00Zhttps://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2008(2)/189-200.pdfhttps://doaj.org/toc/1120-7183https://doaj.org/toc/2532-3350We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric and coercive matrix, and Φ is continuous function but without any growth assumption on u.Hicham RedwaneSapienza Università Editricearticlenonlinear parabolic equationsuniquenessrenormalized solutionsMathematicsQA1-939ENFRITRendiconti di Matematica e delle Sue Applicazioni, Vol 28, Iss 2, Pp 189-200 (2008)
institution DOAJ
collection DOAJ
language EN
FR
IT
topic nonlinear parabolic equations
uniqueness
renormalized solutions
Mathematics
QA1-939
spellingShingle nonlinear parabolic equations
uniqueness
renormalized solutions
Mathematics
QA1-939
Hicham Redwane
Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
description We prove uniqueness and a comparison principle of renormalized solutions for a class of doubly nonlinear parabolic equations ∂b(x,u)/∂t − div(A(t, x)Du + Φ(u)) = f, where the right side belongs to L1((0, T) × Ω) and where b(x, u) is unbounded function of u and where A(t, x) is a bounded symmetric and coercive matrix, and Φ is continuous function but without any growth assumption on u.
format article
author Hicham Redwane
author_facet Hicham Redwane
author_sort Hicham Redwane
title Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
title_short Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
title_full Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
title_fullStr Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
title_full_unstemmed Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
title_sort uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities
publisher Sapienza Università Editrice
publishDate 2008
url https://doaj.org/article/38921a86a4f9409db04c2bffaa4d656a
work_keys_str_mv AT hichamredwane uniquenessofrenormalizedsolutionsforaclassofparabolicequationswithunboundednonlinearities
_version_ 1718407216861544448