Differentially private density estimation with skew-normal mixtures model
Abstract The protection of private data is a hot research issue in the era of big data. Differential privacy is a strong privacy guarantees in data analysis. In this paper, we propose DP-MSNM, a parametric density estimation algorithm using multivariate skew-normal mixtures (MSNM) model to different...
Guardado en:
Autor principal: | Weisan Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38a81501649e481ca7c43f94c250503a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deconvoluting kernel density estimation and regression for locally differentially private data
por: Farhad Farokhi
Publicado: (2020) -
An automatic spike sorting algorithm based on adaptive spike detection and a mixture of skew-t distributions
por: Ramin Toosi, et al.
Publicado: (2021) -
ALPHA-SKEW-NORMAL DISTRIBUTION
por: Elal-Olivero,David
Publicado: (2010) -
A note on rescalings of the skew-normal distribution
por: Venegas,Osvaldo, et al.
Publicado: (2012) -
INFORMATION MATRIX FOR GENERALIZED SKEW - NORMAL DISTRIBUTIONS
por: W. Gómez,Héctor, et al.
Publicado: (2010)