Structure-based protein function prediction using graph convolutional networks
The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence fea...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38a935b25ce6438ca4cd1a800c3d5727 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:38a935b25ce6438ca4cd1a800c3d5727 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:38a935b25ce6438ca4cd1a800c3d57272021-12-02T14:47:28ZStructure-based protein function prediction using graph convolutional networks10.1038/s41467-021-23303-92041-1723https://doaj.org/article/38a935b25ce6438ca4cd1a800c3d57272021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23303-9https://doaj.org/toc/2041-1723The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features extracted from a protein language model and protein structures.Vladimir GligorijevićP. Douglas RenfrewTomasz KosciolekJulia Koehler LemanDaniel BerenbergTommi VatanenChris ChandlerBryn C. TaylorIan M. FiskHera VlamakisRamnik J. XavierRob KnightKyunghyun ChoRichard BonneauNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Vladimir Gligorijević P. Douglas Renfrew Tomasz Kosciolek Julia Koehler Leman Daniel Berenberg Tommi Vatanen Chris Chandler Bryn C. Taylor Ian M. Fisk Hera Vlamakis Ramnik J. Xavier Rob Knight Kyunghyun Cho Richard Bonneau Structure-based protein function prediction using graph convolutional networks |
description |
The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features extracted from a protein language model and protein structures. |
format |
article |
author |
Vladimir Gligorijević P. Douglas Renfrew Tomasz Kosciolek Julia Koehler Leman Daniel Berenberg Tommi Vatanen Chris Chandler Bryn C. Taylor Ian M. Fisk Hera Vlamakis Ramnik J. Xavier Rob Knight Kyunghyun Cho Richard Bonneau |
author_facet |
Vladimir Gligorijević P. Douglas Renfrew Tomasz Kosciolek Julia Koehler Leman Daniel Berenberg Tommi Vatanen Chris Chandler Bryn C. Taylor Ian M. Fisk Hera Vlamakis Ramnik J. Xavier Rob Knight Kyunghyun Cho Richard Bonneau |
author_sort |
Vladimir Gligorijević |
title |
Structure-based protein function prediction using graph convolutional networks |
title_short |
Structure-based protein function prediction using graph convolutional networks |
title_full |
Structure-based protein function prediction using graph convolutional networks |
title_fullStr |
Structure-based protein function prediction using graph convolutional networks |
title_full_unstemmed |
Structure-based protein function prediction using graph convolutional networks |
title_sort |
structure-based protein function prediction using graph convolutional networks |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/38a935b25ce6438ca4cd1a800c3d5727 |
work_keys_str_mv |
AT vladimirgligorijevic structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT pdouglasrenfrew structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT tomaszkosciolek structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT juliakoehlerleman structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT danielberenberg structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT tommivatanen structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT chrischandler structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT brynctaylor structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT ianmfisk structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT heravlamakis structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT ramnikjxavier structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT robknight structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT kyunghyuncho structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks AT richardbonneau structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks |
_version_ |
1718389503761055744 |