Structure-based protein function prediction using graph convolutional networks

The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence fea...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vladimir Gligorijević, P. Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Berenberg, Tommi Vatanen, Chris Chandler, Bryn C. Taylor, Ian M. Fisk, Hera Vlamakis, Ramnik J. Xavier, Rob Knight, Kyunghyun Cho, Richard Bonneau
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/38a935b25ce6438ca4cd1a800c3d5727
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:38a935b25ce6438ca4cd1a800c3d5727
record_format dspace
spelling oai:doaj.org-article:38a935b25ce6438ca4cd1a800c3d57272021-12-02T14:47:28ZStructure-based protein function prediction using graph convolutional networks10.1038/s41467-021-23303-92041-1723https://doaj.org/article/38a935b25ce6438ca4cd1a800c3d57272021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23303-9https://doaj.org/toc/2041-1723The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features extracted from a protein language model and protein structures.Vladimir GligorijevićP. Douglas RenfrewTomasz KosciolekJulia Koehler LemanDaniel BerenbergTommi VatanenChris ChandlerBryn C. TaylorIan M. FiskHera VlamakisRamnik J. XavierRob KnightKyunghyun ChoRichard BonneauNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Vladimir Gligorijević
P. Douglas Renfrew
Tomasz Kosciolek
Julia Koehler Leman
Daniel Berenberg
Tommi Vatanen
Chris Chandler
Bryn C. Taylor
Ian M. Fisk
Hera Vlamakis
Ramnik J. Xavier
Rob Knight
Kyunghyun Cho
Richard Bonneau
Structure-based protein function prediction using graph convolutional networks
description The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features extracted from a protein language model and protein structures.
format article
author Vladimir Gligorijević
P. Douglas Renfrew
Tomasz Kosciolek
Julia Koehler Leman
Daniel Berenberg
Tommi Vatanen
Chris Chandler
Bryn C. Taylor
Ian M. Fisk
Hera Vlamakis
Ramnik J. Xavier
Rob Knight
Kyunghyun Cho
Richard Bonneau
author_facet Vladimir Gligorijević
P. Douglas Renfrew
Tomasz Kosciolek
Julia Koehler Leman
Daniel Berenberg
Tommi Vatanen
Chris Chandler
Bryn C. Taylor
Ian M. Fisk
Hera Vlamakis
Ramnik J. Xavier
Rob Knight
Kyunghyun Cho
Richard Bonneau
author_sort Vladimir Gligorijević
title Structure-based protein function prediction using graph convolutional networks
title_short Structure-based protein function prediction using graph convolutional networks
title_full Structure-based protein function prediction using graph convolutional networks
title_fullStr Structure-based protein function prediction using graph convolutional networks
title_full_unstemmed Structure-based protein function prediction using graph convolutional networks
title_sort structure-based protein function prediction using graph convolutional networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/38a935b25ce6438ca4cd1a800c3d5727
work_keys_str_mv AT vladimirgligorijevic structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT pdouglasrenfrew structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT tomaszkosciolek structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT juliakoehlerleman structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT danielberenberg structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT tommivatanen structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT chrischandler structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT brynctaylor structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT ianmfisk structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT heravlamakis structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT ramnikjxavier structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT robknight structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT kyunghyuncho structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
AT richardbonneau structurebasedproteinfunctionpredictionusinggraphconvolutionalnetworks
_version_ 1718389503761055744