Structure-based protein function prediction using graph convolutional networks
The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence fea...
Guardado en:
Autores principales: | Vladimir Gligorijević, P. Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Berenberg, Tommi Vatanen, Chris Chandler, Bryn C. Taylor, Ian M. Fisk, Hera Vlamakis, Ramnik J. Xavier, Rob Knight, Kyunghyun Cho, Richard Bonneau |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38a935b25ce6438ca4cd1a800c3d5727 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Masked graph modeling for molecule generation
por: Omar Mahmood, et al.
Publicado: (2021) -
Sentence Compression Using BERT and Graph Convolutional Networks
por: Yo-Han Park, et al.
Publicado: (2021) -
Graph convolutional and attention models for entity classification in multilayer networks
por: Lorenzo Zangari, et al.
Publicado: (2021) -
Compressing deep graph convolution network with multi-staged knowledge distillation.
por: Junghun Kim, et al.
Publicado: (2021) -
Graph convolutional network method for small sample classification of hyperspectral images
por: ZUO Xibing, et al.
Publicado: (2021)