Learning cellular morphology with neural networks
Volume electron microscopy data of brain tissue can tell us much about neural circuits, but increasingly large data sets demand automation of analysis. Here, the authors introduce cellular morphology neural networks and successfully automate a range of morphological analysis tasks.
Guardado en:
Autores principales: | Philipp J. Schubert, Sven Dorkenwald, Michał Januszewski, Viren Jain, Joergen Kornfeld |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38c48d21d4914eeab082cca5e0f1ad3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cellular tagging as a neural network mechanism for behavioural tagging
por: Masanori Nomoto, et al.
Publicado: (2016) -
Supervised learning in spiking neural networks with FORCE training
por: Wilten Nicola, et al.
Publicado: (2017) -
ANMAF: an automated neuronal morphology analysis framework using convolutional neural networks
por: Ling Tong, et al.
Publicado: (2021) -
Dense cellular segmentation for EM using 2D–3D neural network ensembles
por: Matthew D. Guay, et al.
Publicado: (2021) -
Parsimonious neural networks learn interpretable physical laws
por: Saaketh Desai, et al.
Publicado: (2021)