Learning cellular morphology with neural networks
Volume electron microscopy data of brain tissue can tell us much about neural circuits, but increasingly large data sets demand automation of analysis. Here, the authors introduce cellular morphology neural networks and successfully automate a range of morphological analysis tasks.
Enregistré dans:
Auteurs principaux: | Philipp J. Schubert, Sven Dorkenwald, Michał Januszewski, Viren Jain, Joergen Kornfeld |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/38c48d21d4914eeab082cca5e0f1ad3b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Cellular tagging as a neural network mechanism for behavioural tagging
par: Masanori Nomoto, et autres
Publié: (2016) -
Supervised learning in spiking neural networks with FORCE training
par: Wilten Nicola, et autres
Publié: (2017) -
ANMAF: an automated neuronal morphology analysis framework using convolutional neural networks
par: Ling Tong, et autres
Publié: (2021) -
Dense cellular segmentation for EM using 2D–3D neural network ensembles
par: Matthew D. Guay, et autres
Publié: (2021) -
Parsimonious neural networks learn interpretable physical laws
par: Saaketh Desai, et autres
Publié: (2021)