Relationship between gene regulation network structure and prediction accuracy in high dimensional regression
Abstract The least absolute shrinkage and selection operator (lasso) and principal component regression (PCR) are popular methods of estimating traits from high-dimensional omics data, such as transcriptomes. The prediction accuracy of these estimation methods is highly dependent on the covariance s...
Guardado en:
Autores principales: | Yuichi Okinaga, Daisuke Kyogoku, Satoshi Kondo, Atsushi J. Nagano, Kei Hirose |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38c9865acb7641c6914c6399fe62353d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
por: Wonil Chung, et al.
Publicado: (2019) -
Chaos-generalized regression neural network prediction model of mine water inflow
por: Jianlin Li, et al.
Publicado: (2021) -
Accuracy of wind speed predictability with heights using Recurrent Neural networks
por: Mohandes M., et al.
Publicado: (2021) -
Multivariable Logistic Regression And Back Propagation Artificial Neural Network To Predict Diabetic Retinopathy
por: Yao L, et al.
Publicado: (2019) -
A generalized population dynamics model for reproductive interference with absolute density dependence
por: Daisuke Kyogoku, et al.
Publicado: (2017)