A deep learning model for predicting next-generation sequencing depth from DNA sequence
DNA probes used in next generation sequencing (NGS) have variable hybridisation kinetics, resulting in non-uniform coverage. Here, the authors develop a deep learning model to predict NGS depth using DNA probe sequences and apply to human and non-human sequencing panels.
Guardado en:
Autores principales: | Jinny X. Zhang, Boyan Yordanov, Alexander Gaunt, Michael X. Wang, Peng Dai, Yuan-Jyue Chen, Kerou Zhang, John Z. Fang, Neil Dalchau, Jiaming Li, Andrew Phillips, David Yu Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38cfd7ab6401440b9ae00deafd4781f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DNA qualification workflow for next generation sequencing of histopathological samples.
por: Michele Simbolo, et al.
Publicado: (2013) -
Palindromic sequence artifacts generated during next generation sequencing library preparation from historic and ancient DNA.
por: Bastiaan Star, et al.
Publicado: (2014) -
CHARACTERIZATION OF ENTEROVIRUSES BY NEXT-GENERATION SEQUENCING
por: M. Bessaud, et al.
Publicado: (2018) -
The Early Diagnosis of Scrub Typhus by Metagenomic Next-Generation Sequencing
por: Xianghong Liu, et al.
Publicado: (2021) -
Next-generation sequence analysis of cancer xenograft models.
por: Fernando J Rossello, et al.
Publicado: (2013)