Immobilized Fe3O4-Polydopamine-Thermomyces lanuginosus Lipase-Catalyzed Acylation of Flavonoid Glycosides and Their Analogs: An Improved Insight Into Enzymic Substrate Recognition

The conversion of flavonoid glycosides and their analogs to their lipophilic ester derivatives was developed by nanobiocatalysts from immobilizing Thermomyces lanuginosus lipase (TLL) on polydopamine-functionalized magnetic Fe3O4 nanoparticles (Fe3O4-PDA-TLL). The behavior investigation revealed tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhaoyu Wang, Yang Li, Mingyi Li, Xiaohui Zhang, Qingxia Ji, Xiaojuan Zhao, Yanhong Bi, Si Luo
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/38d63febad22490882336306845c8e02
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The conversion of flavonoid glycosides and their analogs to their lipophilic ester derivatives was developed by nanobiocatalysts from immobilizing Thermomyces lanuginosus lipase (TLL) on polydopamine-functionalized magnetic Fe3O4 nanoparticles (Fe3O4-PDA-TLL). The behavior investigation revealed that Fe3O4-PDA-TLL exhibits a preference for long chain length fatty acids (i.e., C10 to C14) with higher reaction rates of 12.6–13.9 mM/h. Regarding the substrate specificity, Fe3O4-PDA-TLL showed good substrate spectrum and favorably functionalized the primary OH groups, suggesting that the steric hindrances impeded the secondary or phenolic hydroxyl groups of substrates into the bonding site of the active region of TLL to afford the product.