Genetic diversity analysis of Korean peanut germplasm using 48 K SNPs ‘Axiom_Arachis’ Array and its application for cultivar differentiation

Abstract Cultivated peanut (Arachis hypogaea) is one of the important legume oilseed crops. Cultivated peanut has a narrow genetic base. Therefore, it is necessary to widen its genetic base and diversity for additional use. The objective of the present study was to assess the genetic diversity and p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rizwana Begum Syed Nabi, Kwang-Soo Cho, Rupesh Tayade, Ki Won Oh, Myoung Hee Lee, Jung In Kim, Sungup Kim, Suk-Bok Pae, Eunyoung Oh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/38e6f4a3d4b44693a705d9404fb3b286
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Cultivated peanut (Arachis hypogaea) is one of the important legume oilseed crops. Cultivated peanut has a narrow genetic base. Therefore, it is necessary to widen its genetic base and diversity for additional use. The objective of the present study was to assess the genetic diversity and population structure of 96 peanut genotypes with 9478 high-resolution SNPs identified from a 48 K ‘Axiom_Arachis’ SNP array. Korean set genotypes were also compared with a mini-core of US genotypes. These sets of genotypes were used for genetic diversity analysis. Model-based structure analysis at K = 2 indicated the presence of two subpopulations in both sets of genotypes. Phylogenetic and PCA analysis clustered these genotypes into two major groups. However, clear genotype distribution was not observed for categories of subspecies, botanical variety, or origin. The analysis also revealed that current Korean genetic resources lacked variability compared to US mini-core genotypes. These results suggest that Korean genetic resources need to be expanded by creating new allele combinations and widening the genetic pool to offer new genetic variations for Korean peanut improvement programs. High-quality SNP data generated in this study could be used for identifying varietal contaminant, QTL, and genes associated with desirable traits by performing mapping, genome-wide association studies.