A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems

Abstract In this paper, we introduce a self-adaptive inertial subgradient extragradient method for solving pseudomonotone equilibrium problem and common fixed point problem in real Hilbert spaces. The algorithm consists of an inertial extrapolation process for speeding the rate of its convergence, a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lateef Olakunle Jolaoso, Maggie Aphane
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2020
Materias:
Acceso en línea:https://doaj.org/article/38e94ae26ba24275827c5a942fdb4946
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:38e94ae26ba24275827c5a942fdb4946
record_format dspace
spelling oai:doaj.org-article:38e94ae26ba24275827c5a942fdb49462021-12-02T15:26:41ZA self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems10.1186/s13663-020-00676-y1687-1812https://doaj.org/article/38e94ae26ba24275827c5a942fdb49462020-07-01T00:00:00Zhttp://link.springer.com/article/10.1186/s13663-020-00676-yhttps://doaj.org/toc/1687-1812Abstract In this paper, we introduce a self-adaptive inertial subgradient extragradient method for solving pseudomonotone equilibrium problem and common fixed point problem in real Hilbert spaces. The algorithm consists of an inertial extrapolation process for speeding the rate of its convergence, a monotone nonincreasing stepsize rule, and a viscosity approximation method which guaranteed its strong convergence. More so, a strong convergence theorem is proved for the sequence generated by the algorithm under some mild conditions and without prior knowledge of the Lipschitz-like constants of the equilibrium bifunction. We further provide some numerical examples to illustrate the performance and accuracy of our method.Lateef Olakunle JolaosoMaggie AphaneSpringerOpenarticleExtragradient methodEquilibrium problemsCommon fixed pointSelf-adaptive methodPseudomonotoneApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2020, Iss 1, Pp 1-22 (2020)
institution DOAJ
collection DOAJ
language EN
topic Extragradient method
Equilibrium problems
Common fixed point
Self-adaptive method
Pseudomonotone
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Extragradient method
Equilibrium problems
Common fixed point
Self-adaptive method
Pseudomonotone
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Lateef Olakunle Jolaoso
Maggie Aphane
A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
description Abstract In this paper, we introduce a self-adaptive inertial subgradient extragradient method for solving pseudomonotone equilibrium problem and common fixed point problem in real Hilbert spaces. The algorithm consists of an inertial extrapolation process for speeding the rate of its convergence, a monotone nonincreasing stepsize rule, and a viscosity approximation method which guaranteed its strong convergence. More so, a strong convergence theorem is proved for the sequence generated by the algorithm under some mild conditions and without prior knowledge of the Lipschitz-like constants of the equilibrium bifunction. We further provide some numerical examples to illustrate the performance and accuracy of our method.
format article
author Lateef Olakunle Jolaoso
Maggie Aphane
author_facet Lateef Olakunle Jolaoso
Maggie Aphane
author_sort Lateef Olakunle Jolaoso
title A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
title_short A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
title_full A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
title_fullStr A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
title_full_unstemmed A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
title_sort self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems
publisher SpringerOpen
publishDate 2020
url https://doaj.org/article/38e94ae26ba24275827c5a942fdb4946
work_keys_str_mv AT lateefolakunlejolaoso aselfadaptiveinertialsubgradientextragradientmethodforpseudomonotoneequilibriumandcommonfixedpointproblems
AT maggieaphane aselfadaptiveinertialsubgradientextragradientmethodforpseudomonotoneequilibriumandcommonfixedpointproblems
AT lateefolakunlejolaoso selfadaptiveinertialsubgradientextragradientmethodforpseudomonotoneequilibriumandcommonfixedpointproblems
AT maggieaphane selfadaptiveinertialsubgradientextragradientmethodforpseudomonotoneequilibriumandcommonfixedpointproblems
_version_ 1718387196113715200