Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness.

Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterog...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martin Wahl, Heike Link, Nicolaos Alexandridis, Jeremy C Thomason, Mauricio Cifuentes, Mark J Costello, Bernardo A P da Gama, Kristina Hillock, Alistair J Hobday, Manfred J Kaufmann, Stefanie Keller, Patrik Kraufvelin, Ina Krüger, Lars Lauterbach, Bruno L Antunes, Markus Molis, Masahiro Nakaoka, Julia Nyström, Zulkamal bin Radzi, Björn Stockhausen, Martin Thiel, Thomas Vance, Annika Weseloh, Mark Whittle, Lisa Wiesmann, Laura Wunderer, Takehisa Yamakita, Mark Lenz
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/38f7f908001b4a20b8aeedd7711de638
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research.