Deep‐learning power and perspectives for genomic selection
Abstract Deep learning (DL) is revolutionizing the development of artificial intelligence systems. For example, before 2015, humans were better than artificial machines at classifying images and solving many problems of computer vision (related to object localization and detection using images), but...
Guardado en:
Autores principales: | Osval Antonio Montesinos‐López, Abelardo Montesinos‐López, Carlos Moises Hernandez‐Suarez, José Alberto Barrón‐López, José Crossa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/38fa095794c74453ac08f20bcf87606a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of a Poisson deep neural network model for the prediction of count data in genome‐based prediction
por: Osval A. Montesinos‐Lopez, et al.
Publicado: (2021) -
Genome‐enabled prediction for sparse testing in multi‐environmental wheat trials
por: Leonardo Crespo‐Herrera, et al.
Publicado: (2021) -
Multitrait machine‐ and deep‐learning models for genomic selection using spectral information in a wheat breeding program
por: Karansher Sandhu, et al.
Publicado: (2021) -
Assessing combining abilities, genomic data, and genotype × environment interactions to predict hybrid grain sorghum performance
por: Jales M. O. Fonseca, et al.
Publicado: (2021) -
Gain from genomic selection for a selection index in two‐row spring barley
por: Daniel W. Sweeney, et al.
Publicado: (2021)