A genetic algorithm-based support vector machine to estimate the transverse mixing coefficient in streams
Transverse mixing coefficient (TMC) is known as one of the most effective parameters in the two-dimensional simulation of water pollution, and increasing the accuracy of estimating this coefficient will improve the modeling process. In the present study, genetic algorithm (GA)-based support vector m...
Guardado en:
Autores principales: | Hosein Nezaratian, Javad Zahiri, Mohammad Fatehi Peykani, AmirHamzeh Haghiabi, Abbas Parsaie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3904f90570f0412e82e1a8a05c8fa5f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hydraulic investigation of finite crested stepped spillways
por: Abbas Parsaie, et al.
Publicado: (2021) -
Observation of multiphonon transverse wobbling in 133Ba
por: K. Rojeeta Devi, et al.
Publicado: (2021) -
Transverse Kähler holonomy in Sasaki Geometry and S-Stability
por: Boyer Charles P., et al.
Publicado: (2021) -
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film
por: Styawati, et al.
Publicado: (2021) -
Comparison of Kernel Function on Support Vector Machine in Classification of Childbirth
por: Putroue Keumala Intan
Publicado: (2019)